## Quick start: DELF extraction and matching [![Paper](http://img.shields.io/badge/paper-arXiv.1612.06321-B3181B.svg)](https://arxiv.org/abs/1612.06321) ### Install DELF library To be able to use this code, please follow [these instructions](INSTALL_INSTRUCTIONS.md) to properly install the DELF library. ### Download Oxford buildings dataset To illustrate DELF usage, please download the Oxford buildings dataset. To follow these instructions closely, please download the dataset to the `tensorflow/models/research/delf/delf/python/examples` directory, as in the following commands: ```bash # From tensorflow/models/research/delf/delf/python/examples/ mkdir data && cd data wget http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/oxbuild_images.tgz mkdir oxford5k_images oxford5k_features tar -xvzf oxbuild_images.tgz -C oxford5k_images/ cd ../ echo data/oxford5k_images/hertford_000056.jpg >> list_images.txt echo data/oxford5k_images/oxford_000317.jpg >> list_images.txt ``` ### Download pre-trained DELF model Also, you will need to download the trained DELF model: ```bash # From tensorflow/models/research/delf/delf/python/examples/ mkdir parameters && cd parameters wget http://storage.googleapis.com/delf/delf_gld_20190411.tar.gz tar -xvzf delf_gld_20190411.tar.gz ``` ### DELF feature extraction Now that you have everything in place, running this command should extract DELF features for the images `hertford_000056.jpg` and `oxford_000317.jpg`: ```bash # From tensorflow/models/research/delf/delf/python/examples/ python3 extract_features.py \ --config_path delf_config_example.pbtxt \ --list_images_path list_images.txt \ --output_dir data/oxford5k_features ``` ### Image matching using DELF features After feature extraction, run this command to perform feature matching between the images `hertford_000056.jpg` and `oxford_000317.jpg`: ```bash python3 match_images.py \ --image_1_path data/oxford5k_images/hertford_000056.jpg \ --image_2_path data/oxford5k_images/oxford_000317.jpg \ --features_1_path data/oxford5k_features/hertford_000056.delf \ --features_2_path data/oxford5k_features/oxford_000317.delf \ --output_image matched_images.png ``` The image `matched_images.png` is generated and should look similar to this one: ![MatchedImagesExample](delf/python/examples/matched_images_example.jpg) ### Troubleshooting #### `matplotlib` `matplotlib` may complain with a message such as `no display name and no $DISPLAY environment variable`. To fix this, one option is add the line `backend : Agg` to the file `.config/matplotlib/matplotlibrc`. On this problem, see the discussion [here](https://stackoverflow.com/questions/37604289/tkinter-tclerror-no-display-name-and-no-display-environment-variable). #### 'skimage' By default, skimage 0.13.XX or 0.14.1 is installed if you followed the instructions. According to [https://github.com/scikit-image/scikit-image/issues/3649#issuecomment-455273659] If you have scikit-image related issues, upgrading to a version above 0.14.1 with `pip3 install -U scikit-image` should fix the issue