# Copyright 2016 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Auxiliary functions for domain adaptation related losses. """ import math import tensorflow as tf def create_summaries(end_points, prefix='', max_images=3, use_op_name=False): """Creates a tf summary per endpoint. If the endpoint is a 4 dimensional tensor it displays it as an image otherwise if it is a two dimensional one it creates a histogram summary. Args: end_points: a dictionary of name, tf tensor pairs. prefix: an optional string to prefix the summary with. max_images: the maximum number of images to display per summary. use_op_name: Use the op name as opposed to the shorter end_points key. """ for layer_name in end_points: if use_op_name: name = end_points[layer_name].op.name else: name = layer_name if len(end_points[layer_name].get_shape().as_list()) == 4: # if it's an actual image do not attempt to reshape it if end_points[layer_name].get_shape().as_list()[-1] == 1 or end_points[ layer_name].get_shape().as_list()[-1] == 3: visualization_image = end_points[layer_name] else: visualization_image = reshape_feature_maps(end_points[layer_name]) tf.summary.image( '{}/{}'.format(prefix, name), visualization_image, max_outputs=max_images) elif len(end_points[layer_name].get_shape().as_list()) == 3: images = tf.expand_dims(end_points[layer_name], 3) tf.summary.image( '{}/{}'.format(prefix, name), images, max_outputs=max_images) elif len(end_points[layer_name].get_shape().as_list()) == 2: tf.summary.histogram('{}/{}'.format(prefix, name), end_points[layer_name]) def reshape_feature_maps(features_tensor): """Reshape activations for tf.summary.image visualization. Arguments: features_tensor: a tensor of activations with a square number of feature maps, eg 4, 9, 16, etc. Returns: A composite image with all the feature maps that can be passed as an argument to tf.summary.image. """ assert len(features_tensor.get_shape().as_list()) == 4 num_filters = features_tensor.get_shape().as_list()[-1] assert num_filters > 0 num_filters_sqrt = math.sqrt(num_filters) assert num_filters_sqrt.is_integer( ), 'Number of filters should be a square number but got {}'.format( num_filters) num_filters_sqrt = int(num_filters_sqrt) conv_summary = tf.unstack(features_tensor, axis=3) conv_one_row = tf.concat(axis=2, values=conv_summary[0:num_filters_sqrt]) ind = 1 conv_final = conv_one_row for ind in range(1, num_filters_sqrt): conv_one_row = tf.concat(axis=2, values=conv_summary[ ind * num_filters_sqrt + 0:ind * num_filters_sqrt + num_filters_sqrt]) conv_final = tf.concat( axis=1, values=[tf.squeeze(conv_final), tf.squeeze(conv_one_row)]) conv_final = tf.expand_dims(conv_final, -1) return conv_final def accuracy(predictions, labels): """Calculates the classificaton accuracy. Args: predictions: the predicted values, a tensor whose size matches 'labels'. labels: the ground truth values, a tensor of any size. Returns: a tensor whose value on evaluation returns the total accuracy. """ return tf.reduce_mean(tf.cast(tf.equal(predictions, labels), tf.float32)) def compute_upsample_values(input_tensor, upsample_height, upsample_width): """Compute values for an upsampling op (ops.BatchCropAndResize). Args: input_tensor: image tensor with shape [batch, height, width, in_channels] upsample_height: integer upsample_width: integer Returns: grid_centers: tensor with shape [batch, 1] crop_sizes: tensor with shape [batch, 1] output_height: integer output_width: integer """ batch, input_height, input_width, _ = input_tensor.shape height_half = input_height / 2. width_half = input_width / 2. grid_centers = tf.constant(batch * [[height_half, width_half]]) crop_sizes = tf.constant(batch * [[input_height, input_width]]) output_height = input_height * upsample_height output_width = input_width * upsample_width return grid_centers, tf.to_float(crop_sizes), output_height, output_width def compute_pairwise_distances(x, y): """Computes the squared pairwise Euclidean distances between x and y. Args: x: a tensor of shape [num_x_samples, num_features] y: a tensor of shape [num_y_samples, num_features] Returns: a distance matrix of dimensions [num_x_samples, num_y_samples]. Raises: ValueError: if the inputs do no matched the specified dimensions. """ if not len(x.get_shape()) == len(y.get_shape()) == 2: raise ValueError('Both inputs should be matrices.') if x.get_shape().as_list()[1] != y.get_shape().as_list()[1]: raise ValueError('The number of features should be the same.') norm = lambda x: tf.reduce_sum(tf.square(x), 1) # By making the `inner' dimensions of the two matrices equal to 1 using # broadcasting then we are essentially substracting every pair of rows # of x and y. # x will be num_samples x num_features x 1, # and y will be 1 x num_features x num_samples (after broadcasting). # After the substraction we will get a # num_x_samples x num_features x num_y_samples matrix. # The resulting dist will be of shape num_y_samples x num_x_samples. # and thus we need to transpose it again. return tf.transpose(norm(tf.expand_dims(x, 2) - tf.transpose(y))) def gaussian_kernel_matrix(x, y, sigmas): r"""Computes a Guassian Radial Basis Kernel between the samples of x and y. We create a sum of multiple gaussian kernels each having a width sigma_i. Args: x: a tensor of shape [num_samples, num_features] y: a tensor of shape [num_samples, num_features] sigmas: a tensor of floats which denote the widths of each of the gaussians in the kernel. Returns: A tensor of shape [num_samples{x}, num_samples{y}] with the RBF kernel. """ beta = 1. / (2. * (tf.expand_dims(sigmas, 1))) dist = compute_pairwise_distances(x, y) s = tf.matmul(beta, tf.reshape(dist, (1, -1))) return tf.reshape(tf.reduce_sum(tf.exp(-s), 0), tf.shape(dist))