# Copyright 2018 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Random policy on an environment.""" import tensorflow as tf import numpy as np import random from environments import create_maze_env app = tf.app flags = tf.flags logging = tf.logging FLAGS = flags.FLAGS flags.DEFINE_string('env', 'AntMaze', 'environment name: AntMaze, AntPush, or AntFall') flags.DEFINE_integer('episode_length', 500, 'episode length') flags.DEFINE_integer('num_episodes', 50, 'number of episodes') def get_goal_sample_fn(env_name): if env_name == 'AntMaze': # NOTE: When evaluating (i.e. the metrics shown in the paper, # we use the commented out goal sampling function. The uncommented # one is only used for training. #return lambda: np.array([0., 16.]) return lambda: np.random.uniform((-4, -4), (20, 20)) elif env_name == 'AntPush': return lambda: np.array([0., 19.]) elif env_name == 'AntFall': return lambda: np.array([0., 27., 4.5]) else: assert False, 'Unknown env' def get_reward_fn(env_name): if env_name == 'AntMaze': return lambda obs, goal: -np.sum(np.square(obs[:2] - goal)) ** 0.5 elif env_name == 'AntPush': return lambda obs, goal: -np.sum(np.square(obs[:2] - goal)) ** 0.5 elif env_name == 'AntFall': return lambda obs, goal: -np.sum(np.square(obs[:3] - goal)) ** 0.5 else: assert False, 'Unknown env' def success_fn(last_reward): return last_reward > -5.0 class EnvWithGoal(object): def __init__(self, base_env, env_name): self.base_env = base_env self.goal_sample_fn = get_goal_sample_fn(env_name) self.reward_fn = get_reward_fn(env_name) self.goal = None def reset(self): obs = self.base_env.reset() self.goal = self.goal_sample_fn() return np.concatenate([obs, self.goal]) def step(self, a): obs, _, done, info = self.base_env.step(a) reward = self.reward_fn(obs, self.goal) return np.concatenate([obs, self.goal]), reward, done, info @property def action_space(self): return self.base_env.action_space def run_environment(env_name, episode_length, num_episodes): env = EnvWithGoal( create_maze_env.create_maze_env(env_name).gym, env_name) def action_fn(obs): action_space = env.action_space action_space_mean = (action_space.low + action_space.high) / 2.0 action_space_magn = (action_space.high - action_space.low) / 2.0 random_action = (action_space_mean + action_space_magn * np.random.uniform(low=-1.0, high=1.0, size=action_space.shape)) return random_action rewards = [] successes = [] for ep in range(num_episodes): rewards.append(0.0) successes.append(False) obs = env.reset() for _ in range(episode_length): obs, reward, done, _ = env.step(action_fn(obs)) rewards[-1] += reward successes[-1] = success_fn(reward) if done: break logging.info('Episode %d reward: %.2f, Success: %d', ep + 1, rewards[-1], successes[-1]) logging.info('Average Reward over %d episodes: %.2f', num_episodes, np.mean(rewards)) logging.info('Average Success over %d episodes: %.2f', num_episodes, np.mean(successes)) def main(unused_argv): logging.set_verbosity(logging.INFO) run_environment(FLAGS.env, FLAGS.episode_length, FLAGS.num_episodes) if __name__ == '__main__': app.run()