# Copyright 2018 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Converts DAVIS 2017 data to TFRecord file format with SequenceExample protos. """ import io import math import os from StringIO import StringIO import numpy as np import PIL import tensorflow as tf FLAGS = tf.app.flags.FLAGS tf.app.flags.DEFINE_string('data_folder', 'DAVIS2017/', 'Folder containing the DAVIS 2017 data') tf.app.flags.DEFINE_string('imageset', 'val', 'Which subset to use, either train or val') tf.app.flags.DEFINE_string( 'output_dir', './tfrecord', 'Path to save converted TFRecords of TensorFlow examples.') _NUM_SHARDS_TRAIN = 10 _NUM_SHARDS_VAL = 1 def read_image(path): with open(path) as fid: image_str = fid.read() image = PIL.Image.open(io.BytesIO(image_str)) w, h = image.size return image_str, (h, w) def read_annotation(path): """Reads a single image annotation from a png image. Args: path: Path to the png image. Returns: png_string: The png encoded as string. size: Tuple of (height, width). """ with open(path) as fid: x = np.array(PIL.Image.open(fid)) h, w = x.shape im = PIL.Image.fromarray(x) output = StringIO() im.save(output, format='png') png_string = output.getvalue() output.close() return png_string, (h, w) def process_video(key, input_dir, anno_dir): """Creates a SequenceExample for the video. Args: key: Name of the video. input_dir: Directory which contains the image files. anno_dir: Directory which contains the annotation files. Returns: The created SequenceExample. """ frame_names = sorted(tf.gfile.ListDirectory(input_dir)) anno_files = sorted(tf.gfile.ListDirectory(anno_dir)) assert len(frame_names) == len(anno_files) sequence = tf.train.SequenceExample() context = sequence.context.feature features = sequence.feature_lists.feature_list for i, name in enumerate(frame_names): image_str, image_shape = read_image( os.path.join(input_dir, name)) anno_str, anno_shape = read_annotation( os.path.join(anno_dir, name[:-4] + '.png')) image_encoded = features['image/encoded'].feature.add() image_encoded.bytes_list.value.append(image_str) segmentation_encoded = features['segmentation/object/encoded'].feature.add() segmentation_encoded.bytes_list.value.append(anno_str) np.testing.assert_array_equal(np.array(image_shape), np.array(anno_shape)) if i == 0: first_shape = np.array(image_shape) else: np.testing.assert_array_equal(np.array(image_shape), first_shape) context['video_id'].bytes_list.value.append(key.encode('ascii')) context['clip/frames'].int64_list.value.append(len(frame_names)) context['image/format'].bytes_list.value.append('JPEG') context['image/channels'].int64_list.value.append(3) context['image/height'].int64_list.value.append(first_shape[0]) context['image/width'].int64_list.value.append(first_shape[1]) context['segmentation/object/format'].bytes_list.value.append('PNG') context['segmentation/object/height'].int64_list.value.append(first_shape[0]) context['segmentation/object/width'].int64_list.value.append(first_shape[1]) return sequence def convert(data_folder, imageset, output_dir, num_shards): """Converts the specified subset of DAVIS 2017 to TFRecord format. Args: data_folder: The path to the DAVIS 2017 data. imageset: The subset to use, either train or val. output_dir: Where to store the TFRecords. num_shards: The number of shards used for storing the data. """ sets_file = os.path.join(data_folder, 'ImageSets', '2017', imageset + '.txt') vids = [x.strip() for x in open(sets_file).readlines()] num_vids = len(vids) num_vids_per_shard = int(math.ceil(num_vids) / float(num_shards)) for shard_id in range(num_shards): output_filename = os.path.join( output_dir, '%s-%05d-of-%05d.tfrecord' % (imageset, shard_id, num_shards)) with tf.python_io.TFRecordWriter(output_filename) as tfrecord_writer: start_idx = shard_id * num_vids_per_shard end_idx = min((shard_id + 1) * num_vids_per_shard, num_vids) for i in range(start_idx, end_idx): print('Converting video %d/%d shard %d video %s' % ( i + 1, num_vids, shard_id, vids[i])) img_dir = os.path.join(data_folder, 'JPEGImages', '480p', vids[i]) anno_dir = os.path.join(data_folder, 'Annotations', '480p', vids[i]) example = process_video(vids[i], img_dir, anno_dir) tfrecord_writer.write(example.SerializeToString()) def main(unused_argv): imageset = FLAGS.imageset assert imageset in ('train', 'val') if imageset == 'train': num_shards = _NUM_SHARDS_TRAIN else: num_shards = _NUM_SHARDS_VAL convert(FLAGS.data_folder, FLAGS.imageset, FLAGS.output_dir, num_shards) if __name__ == '__main__': tf.app.run()