# Copyright 2017 Google, Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Custom RNN cells for hierarchical RNNs.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from learned_optimizer.optimizer import utils class BiasGRUCell(tf.contrib.rnn.RNNCell): """GRU cell (cf. http://arxiv.org/abs/1406.1078) with an additional bias.""" def __init__(self, num_units, activation=tf.tanh, scale=0.1, gate_bias_init=0., random_seed=None): self._num_units = num_units self._activation = activation self._scale = scale self._gate_bias_init = gate_bias_init self._random_seed = random_seed @property def state_size(self): return self._num_units @property def output_size(self): return self._num_units def __call__(self, inputs, state, bias=None): # Split the injected bias vector into a bias for the r, u, and c updates. if bias is None: bias = tf.zeros((1, 3)) r_bias, u_bias, c_bias = tf.split(bias, 3, 1) with tf.variable_scope(type(self).__name__): # "BiasGRUCell" with tf.variable_scope("gates"): # Reset gate and update gate. proj = utils.affine([inputs, state], 2 * self._num_units, scale=self._scale, bias_init=self._gate_bias_init, random_seed=self._random_seed) r_lin, u_lin = tf.split(proj, 2, 1) r, u = tf.nn.sigmoid(r_lin + r_bias), tf.nn.sigmoid(u_lin + u_bias) with tf.variable_scope("candidate"): proj = utils.affine([inputs, r * state], self._num_units, scale=self._scale, random_seed=self._random_seed) c = self._activation(proj + c_bias) new_h = u * state + (1 - u) * c return new_h, new_h