# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== r"""Evaluation executable for detection models. This executable is used to evaluate DetectionModels. Example usage: ./eval \ --logtostderr \ --checkpoint_dir=path/to/checkpoint_dir \ --eval_dir=path/to/eval_dir \ --pipeline_config_path=pipeline_config.pbtxt """ import functools import os import tensorflow.compat.v1 as tf from google.protobuf import text_format from lstm_object_detection import evaluator from lstm_object_detection import model_builder from lstm_object_detection.inputs import seq_dataset_builder from lstm_object_detection.utils import config_util from object_detection.utils import label_map_util tf.logging.set_verbosity(tf.logging.INFO) flags = tf.app.flags flags.DEFINE_boolean('eval_training_data', False, 'If training data should be evaluated for this job.') flags.DEFINE_string('checkpoint_dir', '', 'Directory containing checkpoints to evaluate, typically ' 'set to `train_dir` used in the training job.') flags.DEFINE_string('eval_dir', '', 'Directory to write eval summaries to.') flags.DEFINE_string('pipeline_config_path', '', 'Path to a pipeline_pb2.TrainEvalPipelineConfig config ' 'file. If provided, other configs are ignored') flags.DEFINE_boolean('run_once', False, 'Option to only run a single pass of ' 'evaluation. Overrides the `max_evals` parameter in the ' 'provided config.') FLAGS = flags.FLAGS def main(unused_argv): assert FLAGS.checkpoint_dir, '`checkpoint_dir` is missing.' assert FLAGS.eval_dir, '`eval_dir` is missing.' if FLAGS.pipeline_config_path: configs = config_util.get_configs_from_pipeline_file( FLAGS.pipeline_config_path) else: configs = config_util.get_configs_from_multiple_files( model_config_path=FLAGS.model_config_path, eval_config_path=FLAGS.eval_config_path, eval_input_config_path=FLAGS.input_config_path) pipeline_proto = config_util.create_pipeline_proto_from_configs(configs) config_text = text_format.MessageToString(pipeline_proto) tf.gfile.MakeDirs(FLAGS.eval_dir) with tf.gfile.Open(os.path.join(FLAGS.eval_dir, 'pipeline.config'), 'wb') as f: f.write(config_text) model_config = configs['model'] lstm_config = configs['lstm_model'] eval_config = configs['eval_config'] input_config = configs['eval_input_config'] if FLAGS.eval_training_data: input_config.external_input_reader.CopyFrom( configs['train_input_config'].external_input_reader) lstm_config.eval_unroll_length = lstm_config.train_unroll_length model_fn = functools.partial( model_builder.build, model_config=model_config, lstm_config=lstm_config, is_training=False) def get_next(config, model_config, lstm_config, unroll_length): return seq_dataset_builder.build(config, model_config, lstm_config, unroll_length) create_input_dict_fn = functools.partial(get_next, input_config, model_config, lstm_config, lstm_config.eval_unroll_length) label_map = label_map_util.load_labelmap(input_config.label_map_path) max_num_classes = max([item.id for item in label_map.item]) categories = label_map_util.convert_label_map_to_categories( label_map, max_num_classes) if FLAGS.run_once: eval_config.max_evals = 1 evaluator.evaluate(create_input_dict_fn, model_fn, eval_config, categories, FLAGS.checkpoint_dir, FLAGS.eval_dir) if __name__ == '__main__': tf.app.run()