# Copyright 2017 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Image/Mask decoder used while pretraining the network.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf slim = tf.contrib.slim _FEATURE_MAP_SIZE = 8 def _postprocess_im(images): """Performs post-processing for the images returned from conv net. Transforms the value from [-1, 1] to [0, 1]. """ return (images + 1) * 0.5 def model(identities, poses, params, is_training): """Decoder model to get image and mask from latent embedding.""" del is_training f_dim = params.f_dim fc_dim = params.fc_dim outputs = dict() with slim.arg_scope( [slim.fully_connected, slim.conv2d_transpose], weights_initializer=tf.truncated_normal_initializer(stddev=0.02, seed=1)): # Concatenate the identity and pose units h0 = tf.concat([identities, poses], 1) h0 = slim.fully_connected(h0, fc_dim, activation_fn=tf.nn.relu) h1 = slim.fully_connected(h0, fc_dim, activation_fn=tf.nn.relu) # Mask decoder dec_m0 = slim.fully_connected( h1, (_FEATURE_MAP_SIZE**2) * f_dim * 2, activation_fn=tf.nn.relu) dec_m0 = tf.reshape( dec_m0, [-1, _FEATURE_MAP_SIZE, _FEATURE_MAP_SIZE, f_dim * 2]) dec_m1 = slim.conv2d_transpose( dec_m0, f_dim, [5, 5], stride=2, activation_fn=tf.nn.relu) dec_m2 = slim.conv2d_transpose( dec_m1, int(f_dim / 2), [5, 5], stride=2, activation_fn=tf.nn.relu) dec_m3 = slim.conv2d_transpose( dec_m2, 1, [5, 5], stride=2, activation_fn=tf.nn.sigmoid) # Image decoder dec_i0 = slim.fully_connected( h1, (_FEATURE_MAP_SIZE**2) * f_dim * 4, activation_fn=tf.nn.relu) dec_i0 = tf.reshape( dec_i0, [-1, _FEATURE_MAP_SIZE, _FEATURE_MAP_SIZE, f_dim * 4]) dec_i1 = slim.conv2d_transpose( dec_i0, f_dim * 2, [5, 5], stride=2, activation_fn=tf.nn.relu) dec_i2 = slim.conv2d_transpose( dec_i1, f_dim * 2, [5, 5], stride=2, activation_fn=tf.nn.relu) dec_i3 = slim.conv2d_transpose( dec_i2, 3, [5, 5], stride=2, activation_fn=tf.nn.tanh) outputs = dict() outputs['images'] = _postprocess_im(dec_i3) outputs['masks'] = dec_m3 return outputs