# Copyright 2017 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import numpy as np import tensorflow as tf import tensorflow_fold as td from model_n2nmn import netgen_att from model_n2nmn import assembler from model_n2nmn.modules import Modules class Model: def __init__(self, config, kb, text_seq_batch, seq_length_batch, num_vocab_txt, num_vocab_nmn, EOS_idx, num_choices, decoder_sampling, use_gt_layout=None, gt_layout_batch=None, scope='neural_module_network', reuse=None): with tf.variable_scope(scope, reuse=reuse): # Part 1: Seq2seq RNN to generate module layout tokens embedding_mat = tf.get_variable( 'embedding_mat', [num_vocab_txt, config.embed_dim_txt], initializer=tf.contrib.layers.xavier_initializer()) with tf.variable_scope('layout_generation'): att_seq2seq = netgen_att.AttentionSeq2Seq( config, text_seq_batch, seq_length_batch, num_vocab_txt, num_vocab_nmn, EOS_idx, decoder_sampling, embedding_mat, use_gt_layout, gt_layout_batch) self.att_seq2seq = att_seq2seq predicted_tokens = att_seq2seq.predicted_tokens token_probs = att_seq2seq.token_probs word_vecs = att_seq2seq.word_vecs neg_entropy = att_seq2seq.neg_entropy self.atts = att_seq2seq.atts self.predicted_tokens = predicted_tokens self.token_probs = token_probs self.word_vecs = word_vecs self.neg_entropy = neg_entropy # log probability of each generated sequence self.log_seq_prob = tf.reduce_sum(tf.log(token_probs), axis=0) # Part 2: Neural Module Network with tf.variable_scope('layout_execution'): modules = Modules(config, kb, word_vecs, num_choices, embedding_mat) self.modules = modules # Recursion of modules att_shape = [len(kb)] # Forward declaration of module recursion att_expr_decl = td.ForwardDeclaration(td.PyObjectType(), td.TensorType(att_shape)) # _key_find case_key_find = td.Record([('time_idx', td.Scalar(dtype='int32')), ('batch_idx', td.Scalar(dtype='int32'))]) case_key_find = case_key_find >> td.ScopedLayer( modules.KeyFindModule, name_or_scope='KeyFindModule') # _key_filter case_key_filter = td.Record([('input_0', att_expr_decl()), ('time_idx', td.Scalar('int32')), ('batch_idx', td.Scalar('int32'))]) case_key_filter = case_key_filter >> td.ScopedLayer( modules.KeyFilterModule, name_or_scope='KeyFilterModule') recursion_cases = td.OneOf( td.GetItem('module'), {'_key_find': case_key_find, '_key_filter': case_key_filter}) att_expr_decl.resolve_to(recursion_cases) # _val_desc: output scores for choice (for valid expressions) predicted_scores = td.Record([('input_0', recursion_cases), ('time_idx', td.Scalar('int32')), ('batch_idx', td.Scalar('int32'))]) predicted_scores = predicted_scores >> td.ScopedLayer( modules.ValDescribeModule, name_or_scope='ValDescribeModule') # For invalid expressions, define a dummy answer # so that all answers have the same form INVALID = assembler.INVALID_EXPR dummy_scores = td.Void() >> td.FromTensor( np.zeros(num_choices, np.float32)) output_scores = td.OneOf( td.GetItem('module'), {'_val_desc': predicted_scores, INVALID: dummy_scores}) # compile and get the output scores self.compiler = td.Compiler.create(output_scores) self.scores = self.compiler.output_tensors[0] # Regularization: Entropy + L2 self.entropy_reg = tf.reduce_mean(neg_entropy) module_weights = [ v for v in tf.trainable_variables() if (scope in v.op.name and v.op.name.endswith('weights')) ] self.l2_reg = tf.add_n([tf.nn.l2_loss(v) for v in module_weights])