# Copyright 2019 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Inference demo for YAMNet.""" from __future__ import division, print_function import sys import numpy as np import resampy import soundfile as sf import tensorflow as tf import params import yamnet as yamnet_model def main(argv): assert argv graph = tf.Graph() with graph.as_default(): yamnet = yamnet_model.yamnet_frames_model(params) yamnet.load_weights('yamnet.h5') yamnet_classes = yamnet_model.class_names('yamnet_class_map.csv') for file_name in argv: # Decode the WAV file. wav_data, sr = sf.read(file_name, dtype=np.int16) assert wav_data.dtype == np.int16, 'Bad sample type: %r' % wav_data.dtype waveform = wav_data / 32768.0 # Convert to [-1.0, +1.0] # Convert to mono and the sample rate expected by YAMNet. if len(waveform.shape) > 1: waveform = np.mean(waveform, axis=1) if sr != params.SAMPLE_RATE: waveform = resampy.resample(waveform, sr, params.SAMPLE_RATE) # Predict YAMNet classes. # Second output is log-mel-spectrogram array (used for visualizations). # (steps=1 is a work around for Keras batching limitations.) with graph.as_default(): scores, _ = yamnet.predict(np.reshape(waveform, [1, -1]), steps=1) # Scores is a matrix of (time_frames, num_classes) classifier scores. # Average them along time to get an overall classifier output for the clip. prediction = np.mean(scores, axis=0) # Report the highest-scoring classes and their scores. top5_i = np.argsort(prediction)[::-1][:5] print(file_name, ':\n' + '\n'.join(' {:12s}: {:.3f}'.format(yamnet_classes[i], prediction[i]) for i in top5_i)) if __name__ == '__main__': main(sys.argv[1:])