# Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Author: aneelakantan (Arvind Neelakantan) """ from __future__ import print_function import numpy as np import tensorflow as tf import nn_utils class Graph(): def __init__(self, utility, batch_size, max_passes, mode="train"): self.utility = utility self.data_type = self.utility.tf_data_type[self.utility.FLAGS.data_type] self.max_elements = self.utility.FLAGS.max_elements max_elements = self.utility.FLAGS.max_elements self.num_cols = self.utility.FLAGS.max_number_cols self.num_word_cols = self.utility.FLAGS.max_word_cols self.question_length = self.utility.FLAGS.question_length self.batch_size = batch_size self.max_passes = max_passes self.mode = mode self.embedding_dims = self.utility.FLAGS.embedding_dims #input question and a mask self.batch_question = tf.placeholder(tf.int32, [batch_size, self.question_length]) self.batch_question_attention_mask = tf.placeholder( self.data_type, [batch_size, self.question_length]) #ground truth scalar answer and lookup answer self.batch_answer = tf.placeholder(self.data_type, [batch_size]) self.batch_print_answer = tf.placeholder( self.data_type, [batch_size, self.num_cols + self.num_word_cols, max_elements]) #number columns and its processed version self.batch_number_column = tf.placeholder( self.data_type, [batch_size, self.num_cols, max_elements ]) #columns with numeric entries self.batch_processed_number_column = tf.placeholder( self.data_type, [batch_size, self.num_cols, max_elements]) self.batch_processed_sorted_index_number_column = tf.placeholder( tf.int32, [batch_size, self.num_cols, max_elements]) #word columns and its processed version self.batch_processed_word_column = tf.placeholder( self.data_type, [batch_size, self.num_word_cols, max_elements]) self.batch_processed_sorted_index_word_column = tf.placeholder( tf.int32, [batch_size, self.num_word_cols, max_elements]) self.batch_word_column_entry_mask = tf.placeholder( tf.int32, [batch_size, self.num_word_cols, max_elements]) #names of word and number columns along with their mask self.batch_word_column_names = tf.placeholder( tf.int32, [batch_size, self.num_word_cols, self.utility.FLAGS.max_entry_length]) self.batch_word_column_mask = tf.placeholder( self.data_type, [batch_size, self.num_word_cols]) self.batch_number_column_names = tf.placeholder( tf.int32, [batch_size, self.num_cols, self.utility.FLAGS.max_entry_length]) self.batch_number_column_mask = tf.placeholder(self.data_type, [batch_size, self.num_cols]) #exact match and group by max operation self.batch_exact_match = tf.placeholder( self.data_type, [batch_size, self.num_cols + self.num_word_cols, max_elements]) self.batch_column_exact_match = tf.placeholder( self.data_type, [batch_size, self.num_cols + self.num_word_cols]) self.batch_group_by_max = tf.placeholder( self.data_type, [batch_size, self.num_cols + self.num_word_cols, max_elements]) #numbers in the question along with their position. This is used to compute arguments to the comparison operations self.batch_question_number = tf.placeholder(self.data_type, [batch_size, 1]) self.batch_question_number_one = tf.placeholder(self.data_type, [batch_size, 1]) self.batch_question_number_mask = tf.placeholder( self.data_type, [batch_size, max_elements]) self.batch_question_number_one_mask = tf.placeholder(self.data_type, [batch_size, 1]) self.batch_ordinal_question = tf.placeholder( self.data_type, [batch_size, self.question_length]) self.batch_ordinal_question_one = tf.placeholder( self.data_type, [batch_size, self.question_length]) def LSTM_question_embedding(self, sentence, sentence_length): #LSTM processes the input question lstm_params = "question_lstm" hidden_vectors = [] sentence = self.batch_question question_hidden = tf.zeros( [self.batch_size, self.utility.FLAGS.embedding_dims], self.data_type) question_c_hidden = tf.zeros( [self.batch_size, self.utility.FLAGS.embedding_dims], self.data_type) if (self.utility.FLAGS.rnn_dropout > 0.0): if (self.mode == "train"): rnn_dropout_mask = tf.cast( tf.random_uniform( tf.shape(question_hidden), minval=0.0, maxval=1.0) < self.utility.FLAGS.rnn_dropout, self.data_type) / self.utility.FLAGS.rnn_dropout else: rnn_dropout_mask = tf.ones_like(question_hidden) for question_iterator in range(self.question_length): curr_word = sentence[:, question_iterator] question_vector = nn_utils.apply_dropout( nn_utils.get_embedding(curr_word, self.utility, self.params), self.utility.FLAGS.dropout, self.mode) question_hidden, question_c_hidden = nn_utils.LSTMCell( question_vector, question_hidden, question_c_hidden, lstm_params, self.params) if (self.utility.FLAGS.rnn_dropout > 0.0): question_hidden = question_hidden * rnn_dropout_mask hidden_vectors.append(tf.expand_dims(question_hidden, 0)) hidden_vectors = tf.concat(axis=0, values=hidden_vectors) return question_hidden, hidden_vectors def history_recurrent_step(self, curr_hprev, hprev): #A single RNN step for controller or history RNN return tf.tanh( tf.matmul( tf.concat(axis=1, values=[hprev, curr_hprev]), self.params[ "history_recurrent"])) + self.params["history_recurrent_bias"] def question_number_softmax(self, hidden_vectors): #Attention on quetsion to decide the question number to passed to comparison ops def compute_ans(op_embedding, comparison): op_embedding = tf.expand_dims(op_embedding, 0) #dot product of operation embedding with hidden state to the left of the number occurrence first = tf.transpose( tf.matmul(op_embedding, tf.transpose( tf.reduce_sum(hidden_vectors * tf.tile( tf.expand_dims( tf.transpose(self.batch_ordinal_question), 2), [1, 1, self.utility.FLAGS.embedding_dims]), 0)))) second = self.batch_question_number_one_mask + tf.transpose( tf.matmul(op_embedding, tf.transpose( tf.reduce_sum(hidden_vectors * tf.tile( tf.expand_dims( tf.transpose(self.batch_ordinal_question_one), 2 ), [1, 1, self.utility.FLAGS.embedding_dims]), 0)))) question_number_softmax = tf.nn.softmax(tf.concat(axis=1, values=[first, second])) if (self.mode == "test"): cond = tf.equal(question_number_softmax, tf.reshape( tf.reduce_max(question_number_softmax, 1), [self.batch_size, 1])) question_number_softmax = tf.where( cond, tf.fill(tf.shape(question_number_softmax), 1.0), tf.fill(tf.shape(question_number_softmax), 0.0)) question_number_softmax = tf.cast(question_number_softmax, self.data_type) ans = tf.reshape( tf.reduce_sum(question_number_softmax * tf.concat( axis=1, values=[self.batch_question_number, self.batch_question_number_one]), 1), [self.batch_size, 1]) return ans def compute_op_position(op_name): for i in range(len(self.utility.operations_set)): if (op_name == self.utility.operations_set[i]): return i def compute_question_number(op_name): op_embedding = tf.nn.embedding_lookup(self.params_unit, compute_op_position(op_name)) return compute_ans(op_embedding, op_name) curr_greater_question_number = compute_question_number("greater") curr_lesser_question_number = compute_question_number("lesser") curr_geq_question_number = compute_question_number("geq") curr_leq_question_number = compute_question_number("leq") return curr_greater_question_number, curr_lesser_question_number, curr_geq_question_number, curr_leq_question_number def perform_attention(self, context_vector, hidden_vectors, length, mask): #Performs attention on hiddent_vectors using context vector context_vector = tf.tile( tf.expand_dims(context_vector, 0), [length, 1, 1]) #time * bs * d attention_softmax = tf.nn.softmax( tf.transpose(tf.reduce_sum(context_vector * hidden_vectors, 2)) + mask) #batch_size * time attention_softmax = tf.tile( tf.expand_dims(tf.transpose(attention_softmax), 2), [1, 1, self.embedding_dims]) ans_vector = tf.reduce_sum(attention_softmax * hidden_vectors, 0) return ans_vector #computes embeddings for column names using parameters of question module def get_column_hidden_vectors(self): #vector representations for the column names self.column_hidden_vectors = tf.reduce_sum( nn_utils.get_embedding(self.batch_number_column_names, self.utility, self.params), 2) self.word_column_hidden_vectors = tf.reduce_sum( nn_utils.get_embedding(self.batch_word_column_names, self.utility, self.params), 2) def create_summary_embeddings(self): #embeddings for each text entry in the table using parameters of the question module self.summary_text_entry_embeddings = tf.reduce_sum( tf.expand_dims(self.batch_exact_match, 3) * tf.expand_dims( tf.expand_dims( tf.expand_dims( nn_utils.get_embedding(self.utility.entry_match_token_id, self.utility, self.params), 0), 1), 2), 2) def compute_column_softmax(self, column_controller_vector, time_step): #compute softmax over all the columns using column controller vector column_controller_vector = tf.tile( tf.expand_dims(column_controller_vector, 1), [1, self.num_cols + self.num_word_cols, 1]) #max_cols * bs * d column_controller_vector = nn_utils.apply_dropout( column_controller_vector, self.utility.FLAGS.dropout, self.mode) self.full_column_hidden_vectors = tf.concat( axis=1, values=[self.column_hidden_vectors, self.word_column_hidden_vectors]) self.full_column_hidden_vectors += self.summary_text_entry_embeddings self.full_column_hidden_vectors = nn_utils.apply_dropout( self.full_column_hidden_vectors, self.utility.FLAGS.dropout, self.mode) column_logits = tf.reduce_sum( column_controller_vector * self.full_column_hidden_vectors, 2) + ( self.params["word_match_feature_column_name"] * self.batch_column_exact_match) + self.full_column_mask column_softmax = tf.nn.softmax(column_logits) #batch_size * max_cols return column_softmax def compute_first_or_last(self, select, first=True): #perform first ot last operation on row select with probabilistic row selection answer = tf.zeros_like(select) running_sum = tf.zeros([self.batch_size, 1], self.data_type) for i in range(self.max_elements): if (first): current = tf.slice(select, [0, i], [self.batch_size, 1]) else: current = tf.slice(select, [0, self.max_elements - 1 - i], [self.batch_size, 1]) curr_prob = current * (1 - running_sum) curr_prob = curr_prob * tf.cast(curr_prob >= 0.0, self.data_type) running_sum += curr_prob temp_ans = [] curr_prob = tf.expand_dims(tf.reshape(curr_prob, [self.batch_size]), 0) for i_ans in range(self.max_elements): if (not (first) and i_ans == self.max_elements - 1 - i): temp_ans.append(curr_prob) elif (first and i_ans == i): temp_ans.append(curr_prob) else: temp_ans.append(tf.zeros_like(curr_prob)) temp_ans = tf.transpose(tf.concat(axis=0, values=temp_ans)) answer += temp_ans return answer def make_hard_softmax(self, softmax): #converts soft selection to hard selection. used at test time cond = tf.equal( softmax, tf.reshape(tf.reduce_max(softmax, 1), [self.batch_size, 1])) softmax = tf.where( cond, tf.fill(tf.shape(softmax), 1.0), tf.fill(tf.shape(softmax), 0.0)) softmax = tf.cast(softmax, self.data_type) return softmax def compute_max_or_min(self, select, maxi=True): #computes the argmax and argmin of a column with probabilistic row selection answer = tf.zeros([ self.batch_size, self.num_cols + self.num_word_cols, self.max_elements ], self.data_type) sum_prob = tf.zeros([self.batch_size, self.num_cols + self.num_word_cols], self.data_type) for j in range(self.max_elements): if (maxi): curr_pos = j else: curr_pos = self.max_elements - 1 - j select_index = tf.slice(self.full_processed_sorted_index_column, [0, 0, curr_pos], [self.batch_size, -1, 1]) select_mask = tf.equal( tf.tile( tf.expand_dims( tf.tile( tf.expand_dims(tf.range(self.max_elements), 0), [self.batch_size, 1]), 1), [1, self.num_cols + self.num_word_cols, 1]), select_index) curr_prob = tf.expand_dims(select, 1) * tf.cast( select_mask, self.data_type) * self.select_bad_number_mask curr_prob = curr_prob * tf.expand_dims((1 - sum_prob), 2) curr_prob = curr_prob * tf.expand_dims( tf.cast((1 - sum_prob) > 0.0, self.data_type), 2) answer = tf.where(select_mask, curr_prob, answer) sum_prob += tf.reduce_sum(curr_prob, 2) return answer def perform_operations(self, softmax, full_column_softmax, select, prev_select_1, curr_pass): #performs all the 15 operations. computes scalar output, lookup answer and row selector column_softmax = tf.slice(full_column_softmax, [0, 0], [self.batch_size, self.num_cols]) word_column_softmax = tf.slice(full_column_softmax, [0, self.num_cols], [self.batch_size, self.num_word_cols]) init_max = self.compute_max_or_min(select, maxi=True) init_min = self.compute_max_or_min(select, maxi=False) #operations that are column independent count = tf.reshape(tf.reduce_sum(select, 1), [self.batch_size, 1]) select_full_column_softmax = tf.tile( tf.expand_dims(full_column_softmax, 2), [1, 1, self.max_elements ]) #BS * (max_cols + max_word_cols) * max_elements select_word_column_softmax = tf.tile( tf.expand_dims(word_column_softmax, 2), [1, 1, self.max_elements]) #BS * max_word_cols * max_elements select_greater = tf.reduce_sum( self.init_select_greater * select_full_column_softmax, 1) * self.batch_question_number_mask #BS * max_elements select_lesser = tf.reduce_sum( self.init_select_lesser * select_full_column_softmax, 1) * self.batch_question_number_mask #BS * max_elements select_geq = tf.reduce_sum( self.init_select_geq * select_full_column_softmax, 1) * self.batch_question_number_mask #BS * max_elements select_leq = tf.reduce_sum( self.init_select_leq * select_full_column_softmax, 1) * self.batch_question_number_mask #BS * max_elements select_max = tf.reduce_sum(init_max * select_full_column_softmax, 1) #BS * max_elements select_min = tf.reduce_sum(init_min * select_full_column_softmax, 1) #BS * max_elements select_prev = tf.concat(axis=1, values=[ tf.slice(select, [0, 1], [self.batch_size, self.max_elements - 1]), tf.cast(tf.zeros([self.batch_size, 1]), self.data_type) ]) select_next = tf.concat(axis=1, values=[ tf.cast(tf.zeros([self.batch_size, 1]), self.data_type), tf.slice( select, [0, 0], [self.batch_size, self.max_elements - 1]) ]) select_last_rs = self.compute_first_or_last(select, False) select_first_rs = self.compute_first_or_last(select, True) select_word_match = tf.reduce_sum(self.batch_exact_match * select_full_column_softmax, 1) select_group_by_max = tf.reduce_sum(self.batch_group_by_max * select_full_column_softmax, 1) length_content = 1 length_select = 13 length_print = 1 values = tf.concat(axis=1, values=[count]) softmax_content = tf.slice(softmax, [0, 0], [self.batch_size, length_content]) #compute scalar output output = tf.reduce_sum(tf.multiply(softmax_content, values), 1) #compute lookup answer softmax_print = tf.slice(softmax, [0, length_content + length_select], [self.batch_size, length_print]) curr_print = select_full_column_softmax * tf.tile( tf.expand_dims(select, 1), [1, self.num_cols + self.num_word_cols, 1 ]) #BS * max_cols * max_elements (conisders only column) self.batch_lookup_answer = curr_print * tf.tile( tf.expand_dims(softmax_print, 2), [1, self.num_cols + self.num_word_cols, self.max_elements ]) #BS * max_cols * max_elements self.batch_lookup_answer = self.batch_lookup_answer * self.select_full_mask #compute row select softmax_select = tf.slice(softmax, [0, length_content], [self.batch_size, length_select]) select_lists = [ tf.expand_dims(select_prev, 1), tf.expand_dims(select_next, 1), tf.expand_dims(select_first_rs, 1), tf.expand_dims(select_last_rs, 1), tf.expand_dims(select_group_by_max, 1), tf.expand_dims(select_greater, 1), tf.expand_dims(select_lesser, 1), tf.expand_dims(select_geq, 1), tf.expand_dims(select_leq, 1), tf.expand_dims(select_max, 1), tf.expand_dims(select_min, 1), tf.expand_dims(select_word_match, 1), tf.expand_dims(self.reset_select, 1) ] select = tf.reduce_sum( tf.tile(tf.expand_dims(softmax_select, 2), [1, 1, self.max_elements]) * tf.concat(axis=1, values=select_lists), 1) select = select * self.select_whole_mask return output, select def one_pass(self, select, question_embedding, hidden_vectors, hprev, prev_select_1, curr_pass): #Performs one timestep which involves selecting an operation and a column attention_vector = self.perform_attention( hprev, hidden_vectors, self.question_length, self.batch_question_attention_mask) #batch_size * embedding_dims controller_vector = tf.nn.relu( tf.matmul(hprev, self.params["controller_prev"]) + tf.matmul( tf.concat(axis=1, values=[question_embedding, attention_vector]), self.params[ "controller"])) column_controller_vector = tf.nn.relu( tf.matmul(hprev, self.params["column_controller_prev"]) + tf.matmul( tf.concat(axis=1, values=[question_embedding, attention_vector]), self.params[ "column_controller"])) controller_vector = nn_utils.apply_dropout( controller_vector, self.utility.FLAGS.dropout, self.mode) self.operation_logits = tf.matmul(controller_vector, tf.transpose(self.params_unit)) softmax = tf.nn.softmax(self.operation_logits) soft_softmax = softmax #compute column softmax: bs * max_columns weighted_op_representation = tf.transpose( tf.matmul(tf.transpose(self.params_unit), tf.transpose(softmax))) column_controller_vector = tf.nn.relu( tf.matmul( tf.concat(axis=1, values=[ column_controller_vector, weighted_op_representation ]), self.params["break_conditional"])) full_column_softmax = self.compute_column_softmax(column_controller_vector, curr_pass) soft_column_softmax = full_column_softmax if (self.mode == "test"): full_column_softmax = self.make_hard_softmax(full_column_softmax) softmax = self.make_hard_softmax(softmax) output, select = self.perform_operations(softmax, full_column_softmax, select, prev_select_1, curr_pass) return output, select, softmax, soft_softmax, full_column_softmax, soft_column_softmax def compute_lookup_error(self, val): #computes lookup error. cond = tf.equal(self.batch_print_answer, val) inter = tf.where( cond, self.init_print_error, tf.tile( tf.reshape(tf.constant(1e10, self.data_type), [1, 1, 1]), [ self.batch_size, self.utility.FLAGS.max_word_cols + self.utility.FLAGS.max_number_cols, self.utility.FLAGS.max_elements ])) return tf.reduce_min(tf.reduce_min(inter, 1), 1) * tf.cast( tf.greater( tf.reduce_sum(tf.reduce_sum(tf.cast(cond, self.data_type), 1), 1), 0.0), self.data_type) def soft_min(self, x, y): return tf.maximum(-1.0 * (1 / ( self.utility.FLAGS.soft_min_value + 0.0)) * tf.log( tf.exp(-self.utility.FLAGS.soft_min_value * x) + tf.exp( -self.utility.FLAGS.soft_min_value * y)), tf.zeros_like(x)) def error_computation(self): #computes the error of each example in a batch math_error = 0.5 * tf.square(tf.subtract(self.scalar_output, self.batch_answer)) #scale math error math_error = math_error / self.rows math_error = tf.minimum(math_error, self.utility.FLAGS.max_math_error * tf.ones(tf.shape(math_error), self.data_type)) self.init_print_error = tf.where( self.batch_gold_select, -1 * tf.log(self.batch_lookup_answer + 1e-300 + self.invert_select_full_mask), -1 * tf.log(1 - self.batch_lookup_answer)) * self.select_full_mask print_error_1 = self.init_print_error * tf.cast( tf.equal(self.batch_print_answer, 0.0), self.data_type) print_error = tf.reduce_sum(tf.reduce_sum((print_error_1), 1), 1) for val in range(1, 58): print_error += self.compute_lookup_error(val + 0.0) print_error = print_error * self.utility.FLAGS.print_cost / self.num_entries if (self.mode == "train"): error = tf.where( tf.logical_and( tf.not_equal(self.batch_answer, 0.0), tf.not_equal( tf.reduce_sum(tf.reduce_sum(self.batch_print_answer, 1), 1), 0.0)), self.soft_min(math_error, print_error), tf.where( tf.not_equal(self.batch_answer, 0.0), math_error, print_error)) else: error = tf.where( tf.logical_and( tf.equal(self.scalar_output, 0.0), tf.equal( tf.reduce_sum(tf.reduce_sum(self.batch_lookup_answer, 1), 1), 0.0)), tf.ones_like(math_error), tf.where( tf.equal(self.scalar_output, 0.0), print_error, math_error)) return error def batch_process(self): #Computes loss and fraction of correct examples in a batch. self.params_unit = nn_utils.apply_dropout( self.params["unit"], self.utility.FLAGS.dropout, self.mode) batch_size = self.batch_size max_passes = self.max_passes num_timesteps = 1 max_elements = self.max_elements select = tf.cast( tf.fill([self.batch_size, max_elements], 1.0), self.data_type) hprev = tf.cast( tf.fill([self.batch_size, self.embedding_dims], 0.0), self.data_type) #running sum of the hidden states of the model output = tf.cast(tf.fill([self.batch_size, 1], 0.0), self.data_type) #output of the model correct = tf.cast( tf.fill([1], 0.0), self.data_type ) #to compute accuracy, returns number of correct examples for this batch total_error = 0.0 prev_select_1 = tf.zeros_like(select) self.create_summary_embeddings() self.get_column_hidden_vectors() #get question embedding question_embedding, hidden_vectors = self.LSTM_question_embedding( self.batch_question, self.question_length) #compute arguments for comparison operation greater_question_number, lesser_question_number, geq_question_number, leq_question_number = self.question_number_softmax( hidden_vectors) self.init_select_greater = tf.cast( tf.greater(self.full_processed_column, tf.expand_dims(greater_question_number, 2)), self. data_type) * self.select_bad_number_mask #bs * max_cols * max_elements self.init_select_lesser = tf.cast( tf.less(self.full_processed_column, tf.expand_dims(lesser_question_number, 2)), self. data_type) * self.select_bad_number_mask #bs * max_cols * max_elements self.init_select_geq = tf.cast( tf.greater_equal(self.full_processed_column, tf.expand_dims(geq_question_number, 2)), self. data_type) * self.select_bad_number_mask #bs * max_cols * max_elements self.init_select_leq = tf.cast( tf.less_equal(self.full_processed_column, tf.expand_dims(leq_question_number, 2)), self. data_type) * self.select_bad_number_mask #bs * max_cols * max_elements self.init_select_word_match = 0 if (self.utility.FLAGS.rnn_dropout > 0.0): if (self.mode == "train"): history_rnn_dropout_mask = tf.cast( tf.random_uniform( tf.shape(hprev), minval=0.0, maxval=1.0) < self.utility.FLAGS.rnn_dropout, self.data_type) / self.utility.FLAGS.rnn_dropout else: history_rnn_dropout_mask = tf.ones_like(hprev) select = select * self.select_whole_mask self.batch_log_prob = tf.zeros([self.batch_size], dtype=self.data_type) #Perform max_passes and at each pass select operation and column for curr_pass in range(max_passes): print("step: ", curr_pass) output, select, softmax, soft_softmax, column_softmax, soft_column_softmax = self.one_pass( select, question_embedding, hidden_vectors, hprev, prev_select_1, curr_pass) prev_select_1 = select #compute input to history RNN input_op = tf.transpose( tf.matmul( tf.transpose(self.params_unit), tf.transpose( soft_softmax))) #weighted average of emebdding of operations input_col = tf.reduce_sum( tf.expand_dims(soft_column_softmax, 2) * self.full_column_hidden_vectors, 1) history_input = tf.concat(axis=1, values=[input_op, input_col]) history_input = nn_utils.apply_dropout( history_input, self.utility.FLAGS.dropout, self.mode) hprev = self.history_recurrent_step(history_input, hprev) if (self.utility.FLAGS.rnn_dropout > 0.0): hprev = hprev * history_rnn_dropout_mask self.scalar_output = output error = self.error_computation() cond = tf.less(error, 0.0001, name="cond") correct_add = tf.where( cond, tf.fill(tf.shape(cond), 1.0), tf.fill(tf.shape(cond), 0.0)) correct = tf.reduce_sum(correct_add) error = error / batch_size total_error = tf.reduce_sum(error) total_correct = correct / batch_size return total_error, total_correct def compute_error(self): #Sets mask variables and performs batch processing self.batch_gold_select = self.batch_print_answer > 0.0 self.full_column_mask = tf.concat( axis=1, values=[self.batch_number_column_mask, self.batch_word_column_mask]) self.full_processed_column = tf.concat( axis=1, values=[self.batch_processed_number_column, self.batch_processed_word_column]) self.full_processed_sorted_index_column = tf.concat(axis=1, values=[ self.batch_processed_sorted_index_number_column, self.batch_processed_sorted_index_word_column ]) self.select_bad_number_mask = tf.cast( tf.logical_and( tf.not_equal(self.full_processed_column, self.utility.FLAGS.pad_int), tf.not_equal(self.full_processed_column, self.utility.FLAGS.bad_number_pre_process)), self.data_type) self.select_mask = tf.cast( tf.logical_not( tf.equal(self.batch_number_column, self.utility.FLAGS.pad_int)), self.data_type) self.select_word_mask = tf.cast( tf.logical_not( tf.equal(self.batch_word_column_entry_mask, self.utility.dummy_token_id)), self.data_type) self.select_full_mask = tf.concat( axis=1, values=[self.select_mask, self.select_word_mask]) self.select_whole_mask = tf.maximum( tf.reshape( tf.slice(self.select_mask, [0, 0, 0], [self.batch_size, 1, self.max_elements]), [self.batch_size, self.max_elements]), tf.reshape( tf.slice(self.select_word_mask, [0, 0, 0], [self.batch_size, 1, self.max_elements]), [self.batch_size, self.max_elements])) self.invert_select_full_mask = tf.cast( tf.concat(axis=1, values=[ tf.equal(self.batch_number_column, self.utility.FLAGS.pad_int), tf.equal(self.batch_word_column_entry_mask, self.utility.dummy_token_id) ]), self.data_type) self.batch_lookup_answer = tf.zeros(tf.shape(self.batch_gold_select)) self.reset_select = self.select_whole_mask self.rows = tf.reduce_sum(self.select_whole_mask, 1) self.num_entries = tf.reshape( tf.reduce_sum(tf.reduce_sum(self.select_full_mask, 1), 1), [self.batch_size]) self.final_error, self.final_correct = self.batch_process() return self.final_error def create_graph(self, params, global_step): #Creates the graph to compute error, gradient computation and updates parameters self.params = params batch_size = self.batch_size learning_rate = tf.cast(self.utility.FLAGS.learning_rate, self.data_type) self.total_cost = self.compute_error() optimize_params = self.params.values() optimize_names = self.params.keys() print("optimize params ", optimize_names) if (self.utility.FLAGS.l2_regularizer > 0.0): reg_cost = 0.0 for ind_param in self.params.keys(): reg_cost += tf.nn.l2_loss(self.params[ind_param]) self.total_cost += self.utility.FLAGS.l2_regularizer * reg_cost grads = tf.gradients(self.total_cost, optimize_params, name="gradients") grad_norm = 0.0 for p, name in zip(grads, optimize_names): print("grads: ", p, name) if isinstance(p, tf.IndexedSlices): grad_norm += tf.reduce_sum(p.values * p.values) elif not (p == None): grad_norm += tf.reduce_sum(p * p) grad_norm = tf.sqrt(grad_norm) max_grad_norm = np.float32(self.utility.FLAGS.clip_gradients).astype( self.utility.np_data_type[self.utility.FLAGS.data_type]) grad_scale = tf.minimum( tf.cast(1.0, self.data_type), max_grad_norm / grad_norm) clipped_grads = list() for p in grads: if isinstance(p, tf.IndexedSlices): tmp = p.values * grad_scale clipped_grads.append(tf.IndexedSlices(tmp, p.indices)) elif not (p == None): clipped_grads.append(p * grad_scale) else: clipped_grads.append(p) grads = clipped_grads self.global_step = global_step params_list = self.params.values() params_list.append(self.global_step) adam = tf.train.AdamOptimizer( learning_rate, epsilon=tf.cast(self.utility.FLAGS.eps, self.data_type), use_locking=True) self.step = adam.apply_gradients(zip(grads, optimize_params), global_step=self.global_step) self.init_op = tf.global_variables_initializer()