File size: 876 Bytes
67f9cb6 6b19742 67f9cb6 d335e10 67f9cb6 754575e 67f9cb6 4c181bb 67f9cb6 0b4e8d6 1ddbfdc d233f85 67f9cb6 d233f85 d335e10 b1a1c23 d335e10 9ac4415 d233f85 d335e10 d233f85 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
from datasets import load_dataset
import streamlit as st
import pandas as pd
from huggingface_hub import HfFileSystem
fs = HfFileSystem()
# Load your dataset (replace 'your-dataset' with the actual dataset name)
csv_url = 'https://huggingface.co/datasets/NENS/wim_data/resolve/main/input_employees/boran.csv'
df = pd.read_csv('esther.csv')
st.write(df)
df.loc[df['week'] == 42, 'druk'] = 'heel druk'
hoi= fs.ls("datasets/NENS/wim_data/input_employees/", detail=False)
st.write(hoi)
button = st.button('do it')
if button:
st.write(df)
with fs.open("datasets/NENS/wim_data/input_employees/test.csv", "w") as f:
f.write("text,label")
f.write("Fantastic movie!,good")
#https://huggingface.co/datasets/NENS/wim_data/resolve/main/input_employees/esther.csv
#df.to_csv("hf://spaces/NENS/test/test.csv")
print('het werkt!') |