Spaces:
Runtime error
Runtime error
from flask import Flask, request, jsonify | |
from PIL import Image | |
import base64 | |
from io import BytesIO | |
import numpy as np | |
import cv2 | |
import insightface | |
import onnxruntime as ort | |
import huggingface_hub | |
from SegCloth import segment_clothing | |
from transparent_background import Remover | |
app = Flask(__name__) | |
# Charger le modèle | |
def load_model(): | |
path = huggingface_hub.hf_hub_download("public-data/insightface", "models/scrfd_person_2.5g.onnx") | |
options = ort.SessionOptions() | |
options.intra_op_num_threads = 8 | |
options.inter_op_num_threads = 8 | |
session = ort.InferenceSession( | |
path, sess_options=options, providers=["CPUExecutionProvider", "CUDAExecutionProvider"] | |
) | |
model = insightface.model_zoo.retinaface.RetinaFace(model_file=path, session=session) | |
return model | |
detector = load_model() | |
detector.prepare(-1, nms_thresh=0.5, input_size=(640, 640)) | |
# Fonction pour décoder une image encodée en base64 en objet PIL.Image.Image | |
def decode_image_from_base64(image_data): | |
image_data = base64.b64decode(image_data) | |
image = Image.open(BytesIO(image_data)).convert("RGB") # Convertir en RGB pour éviter les problèmes de canal alpha | |
return image | |
# Fonction pour encoder une image PIL en base64 | |
def encode_image_to_base64(image): | |
buffered = BytesIO() | |
image.save(buffered, format="PNG") | |
return base64.b64encode(buffered.getvalue()).decode('utf-8') | |
#@spaces.GPU | |
def remove_background(image): | |
remover = Remover() | |
if isinstance(image, Image.Image): | |
output = remover.process(image) | |
elif isinstance(image, np.ndarray): | |
image_pil = Image.fromarray(image) | |
output = remover.process(image_pil) | |
else: | |
raise TypeError("Unsupported image type") | |
return output | |
# Détecter les personnes et segmenter leurs vêtements | |
def detect_and_segment_persons(image, clothes): | |
img = np.array(image) | |
img = img[:, :, ::-1] # RGB -> BGR | |
bboxes, kpss = detector.detect(img) | |
if bboxes.shape[0] == 0: # Aucun visage détecté | |
return [] | |
height, width, _ = img.shape # Get image dimensions | |
bboxes = np.round(bboxes[:, :4]).astype(int) | |
# Clamp bounding boxes within image boundaries | |
bboxes[:, 0] = np.clip(bboxes[:, 0], 0, width) # x1 | |
bboxes[:, 1] = np.clip(bboxes[:, 1], 0, height) # y1 | |
bboxes[:, 2] = np.clip(bboxes[:, 2], 0, width) # x2 | |
bboxes[:, 3] = np.clip(bboxes[:, 3], 0, height) # y2 | |
all_segmented_images = [] | |
for i in range(bboxes.shape[0]): | |
bbox = bboxes[i] | |
x1, y1, x2, y2 = bbox | |
person_img = img[y1:y2, x1:x2] | |
# Convert numpy array to PIL Image | |
pil_img = Image.fromarray(person_img[:, :, ::-1]) # BGR -> RGB | |
# Segment clothing for the detected person | |
img_rm_background = remove_background(pil_img) | |
segmented_result = segment_clothing(img_rm_background, clothes) | |
# Combine the segmented images for all persons | |
all_segmented_images.extend(segmented_result) | |
return all_segmented_images | |
def welcome(): | |
return "Welcome to Clothing Segmentation API" | |
def detect(): | |
try: | |
data = request.json | |
image_base64 = data['image'] | |
image = decode_image_from_base64(image_base64) | |
# Détection et segmentation des personnes | |
clothes = ["Upper-clothes", "Skirt", "Pants", "Dress"] | |
person_images_base64 = detect_and_segment_persons(image, clothes) | |
return jsonify({'images': person_images_base64}) | |
except Exception as e: | |
print(e) | |
return jsonify({'error': str(e)}), 500 | |
if __name__ == "__main__": | |
app.run(debug=True, host="0.0.0.0", port=7860) |