Spaces:
Runtime error
Runtime error
from transformers import pipeline | |
from PIL import Image, ImageChops | |
import numpy as np | |
from io import BytesIO | |
import base64 | |
# Initialisation du pipeline de segmentation | |
segmenter = pipeline(model="mattmdjaga/segformer_b2_clothes") | |
def is_image_significant(image, threshold=0.01): | |
""" | |
Vérifie si une image contient suffisamment de contenu non transparent. | |
:param image: L'image PIL à vérifier. | |
:param threshold: Seuil de pourcentage de pixels non transparents pour considérer l'image comme significative. | |
:return: True si l'image est significative, sinon False. | |
""" | |
np_image = np.array(image) | |
# Compte le nombre de pixels non transparents | |
non_transparent_pixels = np.sum(np_image[:, :, 3] > 0) | |
# Calcul du pourcentage de pixels non transparents | |
total_pixels = np_image.shape[0] * np_image.shape[1] | |
non_transparent_percentage = non_transparent_pixels / total_pixels | |
return non_transparent_percentage > threshold | |
def segment_clothing(img, clothes=["Hat", "Upper-clothes", "Skirt", "Pants", "Dress", "Belt", "Left-shoe", "Right-shoe", "Scarf"], margin=10): | |
# Segmentation de l'image | |
segments = segmenter(img) | |
# Liste des images segmentées | |
result_images = [] | |
for s in segments: | |
if s['label'] in clothes: | |
# Conversion du masque en tableau NumPy | |
mask_array = np.array(s['mask']) | |
# Création d'une image vide avec transparence | |
empty_image = Image.new("RGBA", img.size, (0, 0, 0, 0)) | |
# Conversion du masque en image PIL (niveau de gris) | |
mask_image = Image.fromarray(mask_array).convert("L") | |
# Extraction de la partie de l'image correspondant au masque | |
segmented_part = ImageChops.multiply(img.convert("RGBA"), Image.merge("RGBA", [mask_image, mask_image, mask_image, mask_image])) | |
# Application du masque sur l'image vide | |
empty_image.paste(segmented_part, mask=mask_image) | |
# Vérifier si l'image est significative avant le recadrage | |
if is_image_significant(empty_image): | |
# Déterminer la bounding box du masque | |
bbox = mask_image.getbbox() | |
if bbox: | |
# Ajouter la marge autour de la bounding box | |
left, top, right, bottom = bbox | |
left = max(0, left - margin) | |
top = max(0, top - margin) | |
right = min(img.width, right + margin) | |
bottom = min(img.height, bottom + margin) | |
# Recadrer l'image à la taille du masque avec la marge | |
cropped_image = empty_image.crop((left, top, right, bottom)) | |
result_images.append(cropped_image) | |
return result_images | |