Saad0KH's picture
Rename app.py to app_gui_api.py
b981c15 verified
from flask import Flask, request, jsonify ,send_file
from PIL import Image
import requests
import base64
import spaces
import multiprocessing
from loadimg import load_img
from io import BytesIO
import numpy as np
import insightface
import onnxruntime as ort
import huggingface_hub
from SegCloth import segment_clothing
from transparent_background import Remover
import threading
import logging
import uuid
from transformers import AutoModelForImageSegmentation,AutoModelForCausalLM, AutoProcessor
import torch
from torchvision import transforms
import subprocess
import logging
import json
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
app = Flask(__name__)
kwargs = {}
kwargs['torch_dtype'] = torch.bfloat16
models = {
"microsoft/Phi-3-vision-128k-instruct": AutoModelForCausalLM.from_pretrained("microsoft/Phi-3-vision-128k-instruct", trust_remote_code=True, torch_dtype="auto", _attn_implementation="flash_attention_2").cuda().eval()
}
processors = {
"microsoft/Phi-3-vision-128k-instruct": AutoProcessor.from_pretrained("microsoft/Phi-3-vision-128k-instruct", trust_remote_code=True)
}
subprocess.run(
"pip install flash-attn --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True,
)
user_prompt = '<|user|>\n'
assistant_prompt = '<|assistant|>\n'
prompt_suffix = "<|end|>\n"
def get_image_from_url(url):
try:
response = requests.get(url)
response.raise_for_status() # Vérifie les erreurs HTTP
img = Image.open(BytesIO(response.content))
return img
except Exception as e:
logging.error(f"Error fetching image from URL: {e}")
raise
# Function to decode a base64 image to PIL.Image.Image
def decode_image_from_base64(image_data):
image_data = base64.b64decode(image_data)
image = Image.open(BytesIO(image_data)).convert("RGB")
return image
# Function to encode a PIL image to base64
def encode_image_to_base64(image):
buffered = BytesIO()
image.save(buffered, format="PNG") # Use PNG for compatibility with RGBA
return base64.b64encode(buffered.getvalue()).decode('utf-8')
def extract_image(image_data):
# Vérifie si l'image est en base64 ou URL
if image_data.startswith('http://') or image_data.startswith('https://'):
return get_image_from_url(image_data) # Télécharge l'image depuis l'URL
else:
return decode_image_from_base64(image_data) # Décode l'image base64
@spaces.GPU
def process_vision(image, text_input=None, model_id="microsoft/Phi-3-vision-128k-instruct"):
model = models[model_id]
processor = processors[model_id]
prompt = f"{user_prompt}<|image_1|>\n{text_input}{prompt_suffix}{assistant_prompt}"
image = image.convert("RGB")
inputs = processor(prompt, image, return_tensors="pt").to("cuda:0")
generate_ids = model.generate(**inputs,
max_new_tokens=4128,
eos_token_id=processor.tokenizer.eos_token_id,
)
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
response = processor.batch_decode(generate_ids,
skip_special_tokens=True,
clean_up_tokenization_spaces=False)[0]
return response
@app.route('/api/vision', methods=['POST'])
def process_api_vision():
try:
data = request.json
image = data['image']
prompt = data['prompt']
image = extract_image(image)
result = process_vision(image,prompt)
# Remove ```json and ``` markers
if result.startswith("```json"):
result = result[7:] # Remove the leading ```json
if result.endswith("```"):
result = result[:-3] # Remove the trailing ```
# Convert the string result to a Python dictionary
try:
logging.info(result)
result_dict = json.loads(result)
except json.JSONDecodeError as e:
logging.error(f"JSON decoding error: {e}")
return jsonify({'error': 'Invalid JSON format in the response'}), 500
return jsonify(result_dict)
except Exception as e:
logging.error(f"Error occurred: {e}")
return jsonify({'error': str(e)}), 500
# Configure logging
logging.basicConfig(level=logging.INFO)
# Load the model lazily
model = None
detector = None
def load_model():
global model, detector
path = huggingface_hub.hf_hub_download("public-data/insightface", "models/scrfd_person_2.5g.onnx")
options = ort.SessionOptions()
options.intra_op_num_threads = 8
options.inter_op_num_threads = 8
session = ort.InferenceSession(
path, sess_options=options, providers=["CPUExecutionProvider", "CUDAExecutionProvider"]
)
model = insightface.model_zoo.retinaface.RetinaFace(model_file=path, session=session)
model.prepare(-1, nms_thresh=0.5, input_size=(640, 640))
detector = model
logging.info("Model loaded successfully.")
torch.set_float32_matmul_precision(["high", "highest"][0])
birefnet = AutoModelForImageSegmentation.from_pretrained(
"ZhengPeng7/BiRefNet", trust_remote_code=True
)
birefnet.to("cuda")
transform_image = transforms.Compose(
[
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
def save_image(img):
unique_name = str(uuid.uuid4()) + ".png"
img.save(unique_name)
return unique_name
# Function to decode a base64 image to PIL.Image.Image
def decode_image_from_base64(image_data):
image_data = base64.b64decode(image_data)
image = Image.open(BytesIO(image_data)).convert("RGB")
return image
# Function to encode a PIL image to base64
def encode_image_to_base64(image):
buffered = BytesIO()
image.save(buffered, format="PNG") # Use PNG for compatibility with RGBA
return base64.b64encode(buffered.getvalue()).decode('utf-8')
@spaces.GPU
def rm_background(image):
im = load_img(image, output_type="pil")
im = im.convert("RGB")
image_size = im.size
origin = im.copy()
image = load_img(im)
input_images = transform_image(image).unsqueeze(0).to("cuda")
# Prediction
with torch.no_grad():
preds = birefnet(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(image_size)
image.putalpha(mask)
return (image)
@spaces.GPU
def remove_background(image):
remover = Remover()
if isinstance(image, Image.Image):
output = remover.process(image)
elif isinstance(image, np.ndarray):
image_pil = Image.fromarray(image)
output = remover.process(image_pil)
else:
raise TypeError("Unsupported image type")
return output
@spaces.GPU
def detect_and_segment_persons(image, clothes):
img = np.array(image)
img = img[:, :, ::-1] # RGB -> BGR
if detector is None:
load_model() # Ensure the model is loaded
bboxes, kpss = detector.detect(img)
if bboxes.shape[0] == 0:
return [save_image(rm_background(image))]
height, width, _ = img.shape
bboxes = np.round(bboxes[:, :4]).astype(int)
bboxes[:, 0] = np.clip(bboxes[:, 0], 0, width)
bboxes[:, 1] = np.clip(bboxes[:, 1], 0, height)
bboxes[:, 2] = np.clip(bboxes[:, 2], 0, width)
bboxes[:, 3] = np.clip(bboxes[:, 3], 0, height)
all_segmented_images = []
for i in range(bboxes.shape[0]):
bbox = bboxes[i]
x1, y1, x2, y2 = bbox
person_img = img[y1:y2, x1:x2]
pil_img = Image.fromarray(person_img[:, :, ::-1])
img_rm_background = rm_background(pil_img)
segmented_result = segment_clothing(img_rm_background, clothes)
image_paths = [save_image(img) for img in segmented_result]
print(image_paths)
all_segmented_images.extend(image_paths)
return all_segmented_images
@app.route('/', methods=['GET'])
def welcome():
return "Welcome to Clothing Segmentation API"
@app.route('/api/detect', methods=['POST'])
def detect():
try:
data = request.json
image_base64 = data['image']
image = decode_image_from_base64(image_base64)
clothes = ["Upper-clothes", "Skirt", "Pants", "Dress"]
result = detect_and_segment_persons(image, clothes)
return jsonify({'images': result})
except Exception as e:
logging.error(f"Error occurred: {e}")
return jsonify({'error': str(e)}), 500
# Route pour récupérer l'image générée
@app.route('/api/get_image/<image_id>', methods=['GET'])
def get_image(image_id):
# Construire le chemin complet de l'image
image_path = image_id # Assurez-vous que le nom de fichier correspond à celui que vous avez utilisé lors de la sauvegarde
# Renvoyer l'image
try:
return send_file(image_path, mimetype='image/png')
except FileNotFoundError:
return jsonify({'error': 'Image not found'}), 404
if __name__ == "__main__":
app.run(debug=True, host="0.0.0.0", port=7860)