Spaces:
Runtime error
Runtime error
Update SegCloth.py
Browse files- SegCloth.py +14 -24
SegCloth.py
CHANGED
@@ -1,52 +1,42 @@
|
|
1 |
-
from transformers import pipeline
|
2 |
from PIL import Image
|
3 |
import numpy as np
|
4 |
from io import BytesIO
|
|
|
5 |
import base64
|
6 |
-
import torch
|
7 |
-
from torchvision.transforms.functional import to_pil_image
|
8 |
|
9 |
-
|
|
|
|
|
10 |
segmenter = pipeline(model="mattmdjaga/segformer_b2_clothes")
|
11 |
-
|
12 |
|
13 |
def encode_image_to_base64(image):
|
14 |
buffered = BytesIO()
|
15 |
image.save(buffered, format="PNG")
|
16 |
return base64.b64encode(buffered.getvalue()).decode('utf-8')
|
17 |
|
18 |
-
def
|
19 |
# Segment image
|
20 |
segments = segmenter(img)
|
21 |
|
22 |
# Convert image to RGBA
|
23 |
img = img.convert("RGBA")
|
24 |
|
|
|
25 |
result_images = []
|
26 |
for s in segments:
|
27 |
if s['label'] in clothes:
|
28 |
-
# Extract mask and resize image to mask size
|
29 |
-
current_mask = np.array(s['mask'])
|
30 |
-
mask_size = current_mask.shape[::-1] # Mask size is (width, height)
|
31 |
-
|
32 |
-
# Resize the original image to match the mask size
|
33 |
-
resized_img = img.resize(mask_size)
|
34 |
-
|
35 |
-
# Apply mask to resized image
|
36 |
final_mask = Image.fromarray(current_mask)
|
37 |
resized_img.putalpha(final_mask)
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
# Convert the final image to base64
|
43 |
-
imageBase64 = encode_image_to_base64(
|
44 |
result_images.append((s['label'], imageBase64))
|
45 |
|
46 |
-
return result_images
|
|
|
47 |
|
48 |
-
|
49 |
-
# img = Image.open('your_image_path_here.png')
|
50 |
-
# result_images = segment_and_enhance_clothing(img)
|
51 |
-
# for clothing_type, image_base64 in result_images:
|
52 |
-
# print(clothing_type, image_base64)
|
|
|
|
|
1 |
from PIL import Image
|
2 |
import numpy as np
|
3 |
from io import BytesIO
|
4 |
+
import io
|
5 |
import base64
|
|
|
|
|
6 |
|
7 |
+
|
8 |
+
|
9 |
+
# Initialize segmentation pipeline
|
10 |
segmenter = pipeline(model="mattmdjaga/segformer_b2_clothes")
|
11 |
+
|
12 |
|
13 |
def encode_image_to_base64(image):
|
14 |
buffered = BytesIO()
|
15 |
image.save(buffered, format="PNG")
|
16 |
return base64.b64encode(buffered.getvalue()).decode('utf-8')
|
17 |
|
18 |
+
def segment_clothing(img, clothes=["Hat", "Upper-clothes", "Skirt", "Pants", "Dress", "Scarf"]):
|
19 |
# Segment image
|
20 |
segments = segmenter(img)
|
21 |
|
22 |
# Convert image to RGBA
|
23 |
img = img.convert("RGBA")
|
24 |
|
25 |
+
# Create list of masks
|
26 |
result_images = []
|
27 |
for s in segments:
|
28 |
if s['label'] in clothes:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
final_mask = Image.fromarray(current_mask)
|
30 |
resized_img.putalpha(final_mask)
|
31 |
|
32 |
+
|
33 |
+
|
34 |
+
|
35 |
# Convert the final image to base64
|
36 |
+
imageBase64 = encode_image_to_base64(resized_img)
|
37 |
result_images.append((s['label'], imageBase64))
|
38 |
|
39 |
+
return result_images
|
40 |
+
|
41 |
|
42 |
+
|
|
|
|
|
|
|
|