Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -4,6 +4,55 @@ import base64
|
|
4 |
from io import BytesIO
|
5 |
import io
|
6 |
from SegCloth import segment_clothing
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
|
9 |
|
@@ -39,5 +88,15 @@ def classify():
|
|
39 |
result = segment_image(image,clothes)
|
40 |
return jsonify({'result': result})
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
if __name__ == "__main__":
|
43 |
app.run(debug=True, host="0.0.0.0", port=7860)
|
|
|
4 |
from io import BytesIO
|
5 |
import io
|
6 |
from SegCloth import segment_clothing
|
7 |
+
import numpy as np
|
8 |
+
import cv2
|
9 |
+
import insightface
|
10 |
+
import onnxruntime as ort
|
11 |
+
import huggingface_hub
|
12 |
+
|
13 |
+
# Charger le modèle
|
14 |
+
def load_model():
|
15 |
+
path = huggingface_hub.hf_hub_download("public-data/insightface", "models/scrfd_person_2.5g.onnx")
|
16 |
+
options = ort.SessionOptions()
|
17 |
+
options.intra_op_num_threads = 8
|
18 |
+
options.inter_op_num_threads = 8
|
19 |
+
session = ort.InferenceSession(
|
20 |
+
path, sess_options=options, providers=["CPUExecutionProvider", "CUDAExecutionProvider"]
|
21 |
+
)
|
22 |
+
model = insightface.model_zoo.retinaface.RetinaFace(model_file=path, session=session)
|
23 |
+
return model
|
24 |
+
|
25 |
+
detector = load_model()
|
26 |
+
detector.prepare(-1, nms_thresh=0.5, input_size=(640, 640))
|
27 |
+
|
28 |
+
# DΓ©tecter les personnes et extraire les images
|
29 |
+
def detect_person(image):
|
30 |
+
img = np.array(image)
|
31 |
+
img = img[:, :, ::-1] # RGB -> BGR
|
32 |
+
|
33 |
+
bboxes, kpss = detector.detect(img)
|
34 |
+
bboxes = np.round(bboxes[:, :4]).astype(int)
|
35 |
+
kpss = np.round(kpss).astype(int)
|
36 |
+
kpss[:, :, 0] = np.clip(kpss[:, :, 0], 0, img.shape[1])
|
37 |
+
kpss[:, :, 1] = np.clip(kpss[:, :, 1], 0, img.shape[0])
|
38 |
+
vbboxes = bboxes.copy()
|
39 |
+
vbboxes[:, 0] = kpss[:, 0, 0]
|
40 |
+
vbboxes[:, 1] = kpss[:, 0, 1]
|
41 |
+
vbboxes[:, 2] = kpss[:, 4, 0]
|
42 |
+
vbboxes[:, 3] = kpss[:, 4, 1]
|
43 |
+
|
44 |
+
person_images = []
|
45 |
+
for i in range(bboxes.shape[0]):
|
46 |
+
bbox = bboxes[i]
|
47 |
+
x1, y1, x2, y2 = bbox
|
48 |
+
person_img = img[y1:y2, x1:x2]
|
49 |
+
|
50 |
+
# Convert numpy array to PIL Image and encode to base64
|
51 |
+
pil_img = Image.fromarray(person_img[:, :, ::-1]) # BGR -> RGB
|
52 |
+
base64_img = encode_image_to_base64(pil_img)
|
53 |
+
person_images.append(base64_img)
|
54 |
+
|
55 |
+
return person_images
|
56 |
|
57 |
|
58 |
|
|
|
88 |
result = segment_image(image,clothes)
|
89 |
return jsonify({'result': result})
|
90 |
|
91 |
+
@app.route('/api/detect', methods=['POST'])
|
92 |
+
def detect():
|
93 |
+
data = request.json
|
94 |
+
image_base64 = data['image']
|
95 |
+
image = decode_image_from_base64(image_base64)
|
96 |
+
|
97 |
+
person_images_base64 = detect_person(image)
|
98 |
+
|
99 |
+
return jsonify({'images': person_images_base64})
|
100 |
+
|
101 |
if __name__ == "__main__":
|
102 |
app.run(debug=True, host="0.0.0.0", port=7860)
|