Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,17 +3,25 @@ from PIL import Image
|
|
3 |
import base64
|
4 |
from io import BytesIO
|
5 |
import numpy as np
|
6 |
-
import cv2
|
7 |
import insightface
|
8 |
import onnxruntime as ort
|
9 |
import huggingface_hub
|
10 |
from SegCloth import segment_clothing
|
11 |
from transparent_background import Remover
|
|
|
|
|
12 |
|
13 |
app = Flask(__name__)
|
14 |
|
15 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
def load_model():
|
|
|
17 |
path = huggingface_hub.hf_hub_download("public-data/insightface", "models/scrfd_person_2.5g.onnx")
|
18 |
options = ort.SessionOptions()
|
19 |
options.intra_op_num_threads = 8
|
@@ -22,24 +30,22 @@ def load_model():
|
|
22 |
path, sess_options=options, providers=["CPUExecutionProvider", "CUDAExecutionProvider"]
|
23 |
)
|
24 |
model = insightface.model_zoo.retinaface.RetinaFace(model_file=path, session=session)
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
detector.prepare(-1, nms_thresh=0.5, input_size=(640, 640))
|
29 |
|
30 |
-
#
|
31 |
def decode_image_from_base64(image_data):
|
32 |
image_data = base64.b64decode(image_data)
|
33 |
-
image = Image.open(BytesIO(image_data)).convert("RGB")
|
34 |
return image
|
35 |
|
36 |
-
#
|
37 |
def encode_image_to_base64(image):
|
38 |
buffered = BytesIO()
|
39 |
-
image.save(buffered, format="
|
40 |
return base64.b64encode(buffered.getvalue()).decode('utf-8')
|
41 |
|
42 |
-
#@spaces.GPU
|
43 |
def remove_background(image):
|
44 |
remover = Remover()
|
45 |
if isinstance(image, Image.Image):
|
@@ -51,46 +57,41 @@ def remove_background(image):
|
|
51 |
raise TypeError("Unsupported image type")
|
52 |
return output
|
53 |
|
54 |
-
# Détecter les personnes et segmenter leurs vêtements
|
55 |
def detect_and_segment_persons(image, clothes):
|
56 |
img = np.array(image)
|
57 |
img = img[:, :, ::-1] # RGB -> BGR
|
58 |
|
|
|
|
|
|
|
59 |
bboxes, kpss = detector.detect(img)
|
60 |
-
if bboxes.shape[0] == 0:
|
61 |
return [encode_image_to_base64(remove_background(image))]
|
62 |
|
63 |
-
height, width, _ = img.shape
|
64 |
-
|
65 |
bboxes = np.round(bboxes[:, :4]).astype(int)
|
66 |
-
|
67 |
-
|
68 |
-
bboxes[:,
|
69 |
-
bboxes[:,
|
70 |
-
bboxes[:, 2] = np.clip(bboxes[:, 2], 0, width) # x2
|
71 |
-
bboxes[:, 3] = np.clip(bboxes[:, 3], 0, height) # y2
|
72 |
|
73 |
all_segmented_images = []
|
74 |
for i in range(bboxes.shape[0]):
|
75 |
bbox = bboxes[i]
|
76 |
x1, y1, x2, y2 = bbox
|
77 |
person_img = img[y1:y2, x1:x2]
|
|
|
78 |
|
79 |
-
# Convert numpy array to PIL Image
|
80 |
-
pil_img = Image.fromarray(person_img[:, :, ::-1]) # BGR -> RGB
|
81 |
-
|
82 |
-
# Segment clothing for the detected person
|
83 |
img_rm_background = remove_background(pil_img)
|
84 |
segmented_result = segment_clothing(img_rm_background, clothes)
|
85 |
|
86 |
-
# Combine the segmented images for all persons
|
87 |
all_segmented_images.extend(segmented_result)
|
88 |
|
89 |
return all_segmented_images
|
90 |
|
91 |
@app.route('/', methods=['GET'])
|
92 |
def welcome():
|
93 |
-
|
94 |
|
95 |
@app.route('/api/detect', methods=['POST'])
|
96 |
def detect():
|
@@ -98,15 +99,24 @@ def detect():
|
|
98 |
data = request.json
|
99 |
image_base64 = data['image']
|
100 |
image = decode_image_from_base64(image_base64)
|
101 |
-
|
102 |
-
# Détection et segmentation des personnes
|
103 |
clothes = ["Upper-clothes", "Skirt", "Pants", "Dress"]
|
104 |
-
person_images_base64 = detect_and_segment_persons(image, clothes)
|
105 |
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
except Exception as e:
|
108 |
-
|
109 |
return jsonify({'error': str(e)}), 500
|
110 |
|
111 |
if __name__ == "__main__":
|
112 |
-
app.run(debug=True, host="0.0.0.0", port=7860)
|
|
|
3 |
import base64
|
4 |
from io import BytesIO
|
5 |
import numpy as np
|
|
|
6 |
import insightface
|
7 |
import onnxruntime as ort
|
8 |
import huggingface_hub
|
9 |
from SegCloth import segment_clothing
|
10 |
from transparent_background import Remover
|
11 |
+
import threading
|
12 |
+
import logging
|
13 |
|
14 |
app = Flask(__name__)
|
15 |
|
16 |
+
# Configure logging
|
17 |
+
logging.basicConfig(level=logging.INFO)
|
18 |
+
|
19 |
+
# Load the model lazily
|
20 |
+
model = None
|
21 |
+
detector = None
|
22 |
+
|
23 |
def load_model():
|
24 |
+
global model, detector
|
25 |
path = huggingface_hub.hf_hub_download("public-data/insightface", "models/scrfd_person_2.5g.onnx")
|
26 |
options = ort.SessionOptions()
|
27 |
options.intra_op_num_threads = 8
|
|
|
30 |
path, sess_options=options, providers=["CPUExecutionProvider", "CUDAExecutionProvider"]
|
31 |
)
|
32 |
model = insightface.model_zoo.retinaface.RetinaFace(model_file=path, session=session)
|
33 |
+
model.prepare(-1, nms_thresh=0.5, input_size=(640, 640))
|
34 |
+
detector = model
|
35 |
+
logging.info("Model loaded successfully.")
|
|
|
36 |
|
37 |
+
# Function to decode a base64 image to PIL.Image.Image
|
38 |
def decode_image_from_base64(image_data):
|
39 |
image_data = base64.b64decode(image_data)
|
40 |
+
image = Image.open(BytesIO(image_data)).convert("RGB")
|
41 |
return image
|
42 |
|
43 |
+
# Function to encode a PIL image to base64
|
44 |
def encode_image_to_base64(image):
|
45 |
buffered = BytesIO()
|
46 |
+
image.save(buffered, format="JPEG") # Use JPEG for potentially better performance
|
47 |
return base64.b64encode(buffered.getvalue()).decode('utf-8')
|
48 |
|
|
|
49 |
def remove_background(image):
|
50 |
remover = Remover()
|
51 |
if isinstance(image, Image.Image):
|
|
|
57 |
raise TypeError("Unsupported image type")
|
58 |
return output
|
59 |
|
|
|
60 |
def detect_and_segment_persons(image, clothes):
|
61 |
img = np.array(image)
|
62 |
img = img[:, :, ::-1] # RGB -> BGR
|
63 |
|
64 |
+
if detector is None:
|
65 |
+
load_model() # Ensure the model is loaded
|
66 |
+
|
67 |
bboxes, kpss = detector.detect(img)
|
68 |
+
if bboxes.shape[0] == 0:
|
69 |
return [encode_image_to_base64(remove_background(image))]
|
70 |
|
71 |
+
height, width, _ = img.shape
|
|
|
72 |
bboxes = np.round(bboxes[:, :4]).astype(int)
|
73 |
+
bboxes[:, 0] = np.clip(bboxes[:, 0], 0, width)
|
74 |
+
bboxes[:, 1] = np.clip(bboxes[:, 1], 0, height)
|
75 |
+
bboxes[:, 2] = np.clip(bboxes[:, 2], 0, width)
|
76 |
+
bboxes[:, 3] = np.clip(bboxes[:, 3], 0, height)
|
|
|
|
|
77 |
|
78 |
all_segmented_images = []
|
79 |
for i in range(bboxes.shape[0]):
|
80 |
bbox = bboxes[i]
|
81 |
x1, y1, x2, y2 = bbox
|
82 |
person_img = img[y1:y2, x1:x2]
|
83 |
+
pil_img = Image.fromarray(person_img[:, :, ::-1])
|
84 |
|
|
|
|
|
|
|
|
|
85 |
img_rm_background = remove_background(pil_img)
|
86 |
segmented_result = segment_clothing(img_rm_background, clothes)
|
87 |
|
|
|
88 |
all_segmented_images.extend(segmented_result)
|
89 |
|
90 |
return all_segmented_images
|
91 |
|
92 |
@app.route('/', methods=['GET'])
|
93 |
def welcome():
|
94 |
+
return "Welcome to Clothing Segmentation API"
|
95 |
|
96 |
@app.route('/api/detect', methods=['POST'])
|
97 |
def detect():
|
|
|
99 |
data = request.json
|
100 |
image_base64 = data['image']
|
101 |
image = decode_image_from_base64(image_base64)
|
102 |
+
|
|
|
103 |
clothes = ["Upper-clothes", "Skirt", "Pants", "Dress"]
|
|
|
104 |
|
105 |
+
# Run the detection and segmentation in a separate thread
|
106 |
+
result = []
|
107 |
+
|
108 |
+
def process_image():
|
109 |
+
nonlocal result
|
110 |
+
result = detect_and_segment_persons(image, clothes)
|
111 |
+
|
112 |
+
thread = threading.Thread(target=process_image)
|
113 |
+
thread.start()
|
114 |
+
thread.join() # Wait for the thread to finish
|
115 |
+
|
116 |
+
return jsonify({'images': result})
|
117 |
except Exception as e:
|
118 |
+
logging.error(f"Error occurred: {e}")
|
119 |
return jsonify({'error': str(e)}), 500
|
120 |
|
121 |
if __name__ == "__main__":
|
122 |
+
app.run(debug=True, host="0.0.0.0", port=7860)
|