Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from PIL import Image
|
3 |
+
import base64
|
4 |
+
import spaces
|
5 |
+
from loadimg import load_img
|
6 |
+
from io import BytesIO
|
7 |
+
import numpy as np
|
8 |
+
import insightface
|
9 |
+
import onnxruntime as ort
|
10 |
+
import huggingface_hub
|
11 |
+
from SegCloth import segment_clothing
|
12 |
+
from transparent_background import Remover
|
13 |
+
import uuid
|
14 |
+
from transformers import AutoModelForImageSegmentation
|
15 |
+
import torch
|
16 |
+
from torchvision import transforms
|
17 |
+
|
18 |
+
# Load the model lazily
|
19 |
+
model = None
|
20 |
+
detector = None
|
21 |
+
def load_model():
|
22 |
+
global model, detector
|
23 |
+
path = huggingface_hub.hf_hub_download("public-data/insightface", "models/scrfd_person_2.5g.onnx")
|
24 |
+
options = ort.SessionOptions()
|
25 |
+
options.intra_op_num_threads = 8
|
26 |
+
options.inter_op_num_threads = 8
|
27 |
+
session = ort.InferenceSession(
|
28 |
+
path, sess_options=options, providers=["CPUExecutionProvider", "CUDAExecutionProvider"]
|
29 |
+
)
|
30 |
+
model = insightface.model_zoo.retinaface.RetinaFace(model_file=path, session=session)
|
31 |
+
model.prepare(-1, nms_thresh=0.5, input_size=(640, 640))
|
32 |
+
detector = model
|
33 |
+
|
34 |
+
# Load the segmentation model
|
35 |
+
torch.set_float32_matmul_precision(["high", "highest"][0])
|
36 |
+
birefnet = AutoModelForImageSegmentation.from_pretrained("ZhengPeng7/BiRefNet", trust_remote_code=True)
|
37 |
+
birefnet.to("cuda")
|
38 |
+
transform_image = transforms.Compose([
|
39 |
+
transforms.Resize((1024, 1024)),
|
40 |
+
transforms.ToTensor(),
|
41 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
42 |
+
])
|
43 |
+
|
44 |
+
def save_image(img):
|
45 |
+
unique_name = str(uuid.uuid4()) + ".png"
|
46 |
+
img.save(unique_name)
|
47 |
+
return unique_name
|
48 |
+
|
49 |
+
def rm_background(image):
|
50 |
+
im = load_img(image, output_type="pil")
|
51 |
+
im = im.convert("RGB")
|
52 |
+
image_size = im.size
|
53 |
+
origin = im.copy()
|
54 |
+
image = load_img(im)
|
55 |
+
input_images = transform_image(image).unsqueeze(0).to("cuda")
|
56 |
+
# Prediction
|
57 |
+
with torch.no_grad():
|
58 |
+
preds = birefnet(input_images)[-1].sigmoid().cpu()
|
59 |
+
pred = preds[0].squeeze()
|
60 |
+
pred_pil = transforms.ToPILImage()(pred)
|
61 |
+
mask = pred_pil.resize(image_size)
|
62 |
+
image.putalpha(mask)
|
63 |
+
return image
|
64 |
+
|
65 |
+
def detect_and_segment_persons(image, clothes):
|
66 |
+
img = np.array(image)
|
67 |
+
img = img[:, :, ::-1] # RGB -> BGR
|
68 |
+
|
69 |
+
if detector is None:
|
70 |
+
load_model() # Ensure the model is loaded
|
71 |
+
|
72 |
+
bboxes, kpss = detector.detect(img)
|
73 |
+
if bboxes.shape[0] == 0:
|
74 |
+
return [rm_background(image)]
|
75 |
+
|
76 |
+
height, width, _ = img.shape
|
77 |
+
bboxes = np.round(bboxes[:, :4]).astype(int)
|
78 |
+
bboxes[:, 0] = np.clip(bboxes[:, 0], 0, width)
|
79 |
+
bboxes[:, 1] = np.clip(bboxes[:, 1], 0, height)
|
80 |
+
bboxes[:, 2] = np.clip(bboxes[:, 2], 0, width)
|
81 |
+
bboxes[:, 3] = np.clip(bboxes[:, 3], 0, height)
|
82 |
+
|
83 |
+
all_segmented_images = []
|
84 |
+
for i in range(bboxes.shape[0]):
|
85 |
+
bbox = bboxes[i]
|
86 |
+
x1, y1, x2, y2 = bbox
|
87 |
+
person_img = img[y1:y2, x1:x2]
|
88 |
+
pil_img = Image.fromarray(person_img[:, :, ::-1])
|
89 |
+
|
90 |
+
img_rm_background = rm_background(pil_img)
|
91 |
+
segmented_result = segment_clothing(img_rm_background, clothes)
|
92 |
+
all_segmented_images.extend(segmented_result)
|
93 |
+
|
94 |
+
return all_segmented_images
|
95 |
+
|
96 |
+
def process_image(input_image):
|
97 |
+
try:
|
98 |
+
clothes = ["Upper-clothes", "Skirt", "Pants", "Dress"]
|
99 |
+
results = detect_and_segment_persons(input_image, clothes)
|
100 |
+
return results
|
101 |
+
except Exception as e:
|
102 |
+
return f"Error occurred: {e}"
|
103 |
+
|
104 |
+
# Gradio Interface
|
105 |
+
def gradio_interface(image):
|
106 |
+
results = process_image(image)
|
107 |
+
if isinstance(results, list):
|
108 |
+
return results
|
109 |
+
else:
|
110 |
+
return "Error: " + results
|
111 |
+
|
112 |
+
# Create Gradio app
|
113 |
+
interface = gr.Interface(
|
114 |
+
fn=gradio_interface,
|
115 |
+
inputs=gr.Image(type="pil"),
|
116 |
+
outputs=gr.Gallery(label="Segmented Results"),
|
117 |
+
title="Clothing Segmentation API"
|
118 |
+
)
|
119 |
+
|
120 |
+
interface.launch(server_name="0.0.0.0", server_port=7860)
|