Spaces:
Runtime error
Runtime error
Create SegCloth.py
Browse files- SegCloth.py +63 -0
SegCloth.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline
|
2 |
+
from PIL import Image
|
3 |
+
import numpy as np
|
4 |
+
import io
|
5 |
+
import base64
|
6 |
+
|
7 |
+
# Initialize segmentation pipeline
|
8 |
+
segmenter = pipeline(model="mattmdjaga/segformer_b2_clothes")
|
9 |
+
|
10 |
+
def image_to_base64(img):
|
11 |
+
buffered = io.BytesIO()
|
12 |
+
img.save(buffered, format="PNG")
|
13 |
+
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
14 |
+
return img_str
|
15 |
+
|
16 |
+
def segment_clothing(img, clothes= ["Hat", "Upper-clothes", "Skirt", "Pants", "Dress", "Belt", "Left-shoe", "Right-shoe", "Scarf"]):
|
17 |
+
# Segment image
|
18 |
+
segments = segmenter(img)
|
19 |
+
|
20 |
+
# List to hold the results
|
21 |
+
results = []
|
22 |
+
|
23 |
+
# Process each segment
|
24 |
+
for s in segments:
|
25 |
+
if s['label'] in clothes:
|
26 |
+
# Convert mask to array
|
27 |
+
mask = np.array(s['mask'])
|
28 |
+
|
29 |
+
# Find bounding box of the mask
|
30 |
+
y_nonzero, x_nonzero = np.nonzero(mask)
|
31 |
+
if len(x_nonzero) == 0 or len(y_nonzero) == 0:
|
32 |
+
continue
|
33 |
+
min_x, max_x = np.min(x_nonzero), np.max(x_nonzero)
|
34 |
+
min_y, max_y = np.min(y_nonzero), np.max(y_nonzero)
|
35 |
+
|
36 |
+
# Crop mask and original image to the bounding box
|
37 |
+
cropped_mask = mask[min_y:max_y+1, min_x:max_x+1]
|
38 |
+
cropped_image = img.crop((min_x, min_y, max_x+1, max_y+1))
|
39 |
+
|
40 |
+
# Create an image with the same size as the bounding box
|
41 |
+
clothing_image = Image.new("RGBA", (max_x - min_x + 1, max_y - min_y + 1), (0, 0, 0, 0))
|
42 |
+
|
43 |
+
# Apply the mask to the new image
|
44 |
+
mask_image = Image.fromarray(cropped_mask * 255) # Convert mask to 255 range for alpha channel
|
45 |
+
|
46 |
+
# Paste cropped image onto the blank image using the mask
|
47 |
+
clothing_image.paste(cropped_image, mask=mask_image)
|
48 |
+
|
49 |
+
# Convert image to base64
|
50 |
+
image_base64 = image_to_base64(clothing_image)
|
51 |
+
|
52 |
+
# Add to results list
|
53 |
+
results.append({
|
54 |
+
"type": s['label'],
|
55 |
+
"image_base64": image_base64
|
56 |
+
})
|
57 |
+
|
58 |
+
return results
|
59 |
+
|
60 |
+
# Example usage
|
61 |
+
# img = Image.open("path_to_your_image.jpg")
|
62 |
+
# results = segment_clothing(img)
|
63 |
+
# print(results)
|