from transformers import pipeline from PIL import Image, ImageChops, ImageOps import numpy as np from io import BytesIO import base64 # Initialisation du pipeline de segmentation segmenter = pipeline(model="mattmdjaga/segformer_b2_clothes") def encode_image_to_base64(image): buffered = BytesIO() image.save(buffered, format="PNG") return base64.b64encode(buffered.getvalue()).decode('utf-8') def segment_clothing(img, clothes=["Hat", "Upper-clothes", "Skirt", "Pants", "Dress", "Belt", "Left-shoe", "Right-shoe", "Scarf"], margin=10): # Segmentation de l'image segments = segmenter(img) # Liste des images segmentées result_images = [] for s in segments: if s['label'] in clothes: # Conversion du masque en tableau NumPy mask_array = np.array(s['mask']) # Création d'une image vide avec transparence empty_image = Image.new("RGBA", img.size, (0, 0, 0, 0)) # Conversion du masque en image PIL (niveau de gris) mask_image = Image.fromarray(mask_array).convert("L") # Extraction de la partie de l'image correspondant au masque segmented_part = ImageChops.multiply(img.convert("RGBA"), Image.merge("RGBA", [mask_image, mask_image, mask_image, mask_image])) # Application du masque sur l'image vide empty_image.paste(segmented_part, mask=mask_image) # Déterminer la bounding box du masque bbox = mask_image.getbbox() if bbox: # Ajouter la marge autour de la bounding box left, top, right, bottom = bbox left = max(0, left - margin) top = max(0, top - margin) right = min(img.width, right + margin) bottom = min(img.height, bottom + margin) # Recadrer l'image à la taille du masque avec la marge cropped_image = empty_image.crop((left, top, right, bottom)) # Encodage de l'image recadrée en base64 imageBase64 = encode_image_to_base64(cropped_image) #result_images.append((s['label'], imageBase64)) result_images.append(imageBase64) return result_images