Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +132 -120
src/streamlit_app.py
CHANGED
@@ -10,12 +10,13 @@ import tempfile
|
|
10 |
import time
|
11 |
|
12 |
# ----- Setup -----
|
|
|
13 |
CACHE_DIR = tempfile.gettempdir()
|
14 |
CHROMA_PATH = os.path.join(CACHE_DIR, "chroma_db")
|
15 |
DEMO_DIR = os.path.join(CACHE_DIR, "demo_images")
|
16 |
os.makedirs(DEMO_DIR, exist_ok=True)
|
17 |
|
18 |
-
# -----
|
19 |
if 'dataset_loaded' not in st.session_state:
|
20 |
st.session_state.dataset_loaded = False
|
21 |
if 'dataset_name' not in st.session_state:
|
@@ -43,20 +44,18 @@ if 'chroma_client' not in st.session_state:
|
|
43 |
name="user_images", metadata={"hnsw:space": "cosine"}
|
44 |
)
|
45 |
|
46 |
-
# -----
|
47 |
-
st.
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
st.
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
# ----- Download + Embed Demo Images -----
|
60 |
def download_image_with_retry(url, path, retries=3, delay=1.0):
|
61 |
for attempt in range(retries):
|
62 |
try:
|
@@ -65,111 +64,124 @@ def download_image_with_retry(url, path, retries=3, delay=1.0):
|
|
65 |
with open(path, 'wb') as f:
|
66 |
f.write(r.content)
|
67 |
return True
|
68 |
-
except Exception
|
69 |
time.sleep(delay)
|
70 |
return False
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
ids
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
])
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
else:
|
175 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
import time
|
11 |
|
12 |
# ----- Setup -----
|
13 |
+
st.set_page_config(page_title="CLIP Image Search", layout="wide")
|
14 |
CACHE_DIR = tempfile.gettempdir()
|
15 |
CHROMA_PATH = os.path.join(CACHE_DIR, "chroma_db")
|
16 |
DEMO_DIR = os.path.join(CACHE_DIR, "demo_images")
|
17 |
os.makedirs(DEMO_DIR, exist_ok=True)
|
18 |
|
19 |
+
# ----- Session State Init -----
|
20 |
if 'dataset_loaded' not in st.session_state:
|
21 |
st.session_state.dataset_loaded = False
|
22 |
if 'dataset_name' not in st.session_state:
|
|
|
44 |
name="user_images", metadata={"hnsw:space": "cosine"}
|
45 |
)
|
46 |
|
47 |
+
# ----- Sidebar -----
|
48 |
+
with st.sidebar:
|
49 |
+
st.title("π§ CLIP Search App")
|
50 |
+
st.markdown("Choose a dataset to begin:")
|
51 |
+
if st.button("π¦ Load Demo Images"):
|
52 |
+
st.session_state.dataset_name = "demo"
|
53 |
+
st.session_state.dataset_loaded = False
|
54 |
+
if st.button("π€ Upload Your Images"):
|
55 |
+
st.session_state.dataset_name = "user"
|
56 |
+
st.session_state.dataset_loaded = False
|
57 |
+
|
58 |
+
# ----- Helper -----
|
|
|
|
|
59 |
def download_image_with_retry(url, path, retries=3, delay=1.0):
|
60 |
for attempt in range(retries):
|
61 |
try:
|
|
|
64 |
with open(path, 'wb') as f:
|
65 |
f.write(r.content)
|
66 |
return True
|
67 |
+
except Exception:
|
68 |
time.sleep(delay)
|
69 |
return False
|
70 |
|
71 |
+
# ----- Main App -----
|
72 |
+
left, right = st.columns([2, 1])
|
73 |
+
|
74 |
+
with left:
|
75 |
+
st.title("π CLIP-Based Image Search")
|
76 |
+
|
77 |
+
# ----- Load Demo -----
|
78 |
+
if st.session_state.dataset_name == "demo" and not st.session_state.dataset_loaded:
|
79 |
+
with st.spinner("Downloading and indexing demo images..."):
|
80 |
+
st.session_state.demo_collection.delete(ids=[str(i) for i in range(50)])
|
81 |
+
demo_image_paths, demo_images = [], []
|
82 |
+
for i in range(50):
|
83 |
+
path = os.path.join(DEMO_DIR, f"img_{i+1:02}.jpg")
|
84 |
+
if not os.path.exists(path):
|
85 |
+
url = f"https://picsum.photos/seed/{i}/1024/768"
|
86 |
+
download_image_with_retry(url, path)
|
87 |
+
try:
|
88 |
+
demo_images.append(Image.open(path).convert("RGB"))
|
89 |
+
demo_image_paths.append(path)
|
90 |
+
except:
|
91 |
+
continue
|
92 |
+
embeddings, ids, metadatas = [], [], []
|
93 |
+
for i, img in enumerate(demo_images):
|
94 |
+
img_tensor = st.session_state.preprocess(img).unsqueeze(0).to(st.session_state.device)
|
95 |
+
with torch.no_grad():
|
96 |
+
embedding = st.session_state.model.encode_image(img_tensor).cpu().numpy().flatten()
|
97 |
+
embeddings.append(embedding)
|
98 |
+
ids.append(str(i))
|
99 |
+
metadatas.append({"path": demo_image_paths[i]})
|
100 |
+
st.session_state.demo_collection.add(embeddings=embeddings, ids=ids, metadatas=metadatas)
|
101 |
+
st.session_state.demo_images = demo_images
|
102 |
+
st.session_state.dataset_loaded = True
|
103 |
+
st.success("β
Demo images loaded!")
|
104 |
+
|
105 |
+
# ----- Upload User Images -----
|
106 |
+
if st.session_state.dataset_name == "user" and not st.session_state.dataset_loaded:
|
107 |
+
uploaded = st.file_uploader("Upload your images", type=["jpg", "jpeg", "png"], accept_multiple_files=True)
|
108 |
+
if uploaded:
|
109 |
+
st.session_state.user_collection.delete(ids=[
|
110 |
+
str(i) for i in range(st.session_state.user_collection.count())
|
111 |
+
])
|
112 |
+
user_images = []
|
113 |
+
for i, file in enumerate(uploaded):
|
114 |
+
try:
|
115 |
+
img = Image.open(file).convert("RGB")
|
116 |
+
except:
|
117 |
+
continue
|
118 |
+
user_images.append(img)
|
119 |
+
img_tensor = st.session_state.preprocess(img).unsqueeze(0).to(st.session_state.device)
|
120 |
+
with torch.no_grad():
|
121 |
+
embedding = st.session_state.model.encode_image(img_tensor).cpu().numpy().flatten()
|
122 |
+
st.session_state.user_collection.add(
|
123 |
+
embeddings=[embedding], ids=[str(i)], metadatas=[{"index": i}]
|
124 |
+
)
|
125 |
+
st.session_state.user_images = user_images
|
126 |
+
st.session_state.dataset_loaded = True
|
127 |
+
st.success(f"β
Uploaded {len(user_images)} images.")
|
128 |
+
|
129 |
+
# ----- Search Section -----
|
130 |
+
if st.session_state.dataset_loaded:
|
131 |
+
st.subheader("π Search")
|
132 |
+
query_type = st.radio("Search by:", ("Text", "Image"))
|
133 |
+
|
134 |
+
query_embedding = None
|
135 |
+
if query_type == "Text":
|
136 |
+
text_query = st.text_input("Enter your search prompt:")
|
137 |
+
if text_query:
|
138 |
+
tokens = clip.tokenize([text_query]).to(st.session_state.device)
|
139 |
+
with torch.no_grad():
|
140 |
+
query_embedding = st.session_state.model.encode_text(tokens).cpu().numpy().flatten()
|
141 |
+
elif query_type == "Image":
|
142 |
+
query_file = st.file_uploader("Upload query image", type=["jpg", "jpeg", "png"], key="query_image")
|
143 |
+
if query_file:
|
144 |
+
query_img = Image.open(query_file).convert("RGB")
|
145 |
+
st.image(query_img, caption="Query Image", width=200)
|
146 |
+
query_tensor = st.session_state.preprocess(query_img).unsqueeze(0).to(st.session_state.device)
|
147 |
+
with torch.no_grad():
|
148 |
+
query_embedding = st.session_state.model.encode_image(query_tensor).cpu().numpy().flatten()
|
149 |
+
|
150 |
+
# ----- Perform Search -----
|
151 |
+
if query_embedding is not None:
|
152 |
+
if st.session_state.dataset_name == "demo":
|
153 |
+
collection = st.session_state.demo_collection
|
154 |
+
images = st.session_state.demo_images
|
155 |
+
else:
|
156 |
+
collection = st.session_state.user_collection
|
157 |
+
images = st.session_state.user_images
|
158 |
+
|
159 |
+
if collection.count() > 0:
|
160 |
+
results = collection.query(
|
161 |
+
query_embeddings=[query_embedding],
|
162 |
+
n_results=min(5, collection.count())
|
163 |
+
)
|
164 |
+
ids = results["ids"][0]
|
165 |
+
distances = results["distances"][0]
|
166 |
+
similarities = [1 - d for d in distances]
|
167 |
+
|
168 |
+
st.subheader("π― Top Matches")
|
169 |
+
cols = st.columns(len(ids))
|
170 |
+
for i, (img_id, sim) in enumerate(zip(ids, similarities)):
|
171 |
+
with cols[i]:
|
172 |
+
st.image(images[int(img_id)], caption=f"Similarity: {sim:.3f}", use_column_width=True)
|
173 |
+
else:
|
174 |
+
st.warning("β οΈ No images available for search.")
|
175 |
+
else:
|
176 |
+
st.info("π Choose a dataset from the sidebar to get started.")
|
177 |
+
|
178 |
+
# ----- Right Panel: Show Current Dataset Images -----
|
179 |
+
with right:
|
180 |
+
st.subheader("πΌοΈ Dataset Preview")
|
181 |
+
image_list = st.session_state.demo_images if st.session_state.dataset_name == "demo" else st.session_state.user_images
|
182 |
+
if st.session_state.dataset_loaded and image_list:
|
183 |
+
st.caption(f"Showing {len(image_list)} images")
|
184 |
+
for i, img in enumerate(image_list[:20]):
|
185 |
+
st.image(img, use_column_width=True)
|
186 |
+
else:
|
187 |
+
st.markdown("No images to preview yet.")
|