Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +102 -60
src/streamlit_app.py
CHANGED
@@ -8,12 +8,19 @@ import numpy as np
|
|
8 |
from skimage.io import imsave
|
9 |
from torchvision.datasets import CIFAR10
|
10 |
import torchvision.transforms as T
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
# Set HuggingFace cache directory
|
13 |
HF_CACHE = os.path.join(tempfile.gettempdir(), "hf_cache")
|
14 |
os.makedirs(HF_CACHE, exist_ok=True)
|
15 |
os.environ["XDG_CACHE_HOME"] = HF_CACHE
|
16 |
os.environ["HF_HOME"] = HF_CACHE
|
|
|
|
|
17 |
|
18 |
from chromadb import PersistentClient
|
19 |
from chromadb.utils.data_loaders import ImageLoader
|
@@ -24,83 +31,112 @@ TEMP_DIR = tempfile.gettempdir()
|
|
24 |
IMAGES_DIR = os.path.join(TEMP_DIR, "extracted_images")
|
25 |
DB_PATH = os.path.join(TEMP_DIR, "image_vdb")
|
26 |
os.makedirs(IMAGES_DIR, exist_ok=True)
|
|
|
27 |
|
28 |
# Init ChromaDB collection
|
29 |
@st.cache_resource
|
30 |
def get_chroma_collection():
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
image_collection = get_chroma_collection()
|
|
|
|
|
40 |
|
41 |
# --- Extract images from PDF ---
|
42 |
def extract_images_from_pdf(pdf_bytes):
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
for
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
# --- Index images ---
|
56 |
def index_images(paths):
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
64 |
|
65 |
# --- Image-to-Image search ---
|
66 |
def query_similar_images(image_file, top_k=5):
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
74 |
return []
|
75 |
-
return res['uris'][0]
|
76 |
|
77 |
# --- Text-to-Image search ---
|
78 |
def search_images_by_text(text, top_k=5):
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
82 |
return []
|
83 |
-
return res['uris'][0]
|
84 |
|
85 |
# --- Load CIFAR-10 Demo Dataset (500 images) ---
|
86 |
@st.cache_resource
|
87 |
def load_demo_cifar10(n=500):
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
|
|
|
|
|
|
|
|
104 |
|
105 |
# === UI START ===
|
106 |
st.title("🔍 Semantic Image Search App")
|
@@ -113,9 +149,12 @@ if choice == "Upload PDF":
|
|
113 |
if pdf:
|
114 |
with st.spinner("Extracting images from PDF..."):
|
115 |
imgs = extract_images_from_pdf(pdf.read())
|
116 |
-
|
117 |
-
|
118 |
-
|
|
|
|
|
|
|
119 |
|
120 |
elif choice == "Upload Images":
|
121 |
imgs = st.file_uploader("📤 Upload image files", type=["jpg", "jpeg", "png", "bmp", "tiff", "webp"], accept_multiple_files=True)
|
@@ -135,9 +174,12 @@ elif choice == "Load CIFAR‑10 Demo":
|
|
135 |
if st.button("🔄 Load 500 CIFAR‑10 Images"):
|
136 |
with st.spinner("Loading CIFAR‑10 demo dataset..."):
|
137 |
paths = load_demo_cifar10(500)
|
138 |
-
|
139 |
-
|
140 |
-
|
|
|
|
|
|
|
141 |
|
142 |
# Step 2: Search
|
143 |
st.divider()
|
@@ -165,4 +207,4 @@ if txt:
|
|
165 |
else:
|
166 |
st.subheader("🔍 Semantic Matches:")
|
167 |
for u in results:
|
168 |
-
st.image(u, width=150)
|
|
|
8 |
from skimage.io import imsave
|
9 |
from torchvision.datasets import CIFAR10
|
10 |
import torchvision.transforms as T
|
11 |
+
import logging
|
12 |
+
|
13 |
+
# Set up logging
|
14 |
+
logging.basicConfig(level=logging.DEBUG)
|
15 |
+
logger = logging.getLogger(__name__)
|
16 |
|
17 |
# Set HuggingFace cache directory
|
18 |
HF_CACHE = os.path.join(tempfile.gettempdir(), "hf_cache")
|
19 |
os.makedirs(HF_CACHE, exist_ok=True)
|
20 |
os.environ["XDG_CACHE_HOME"] = HF_CACHE
|
21 |
os.environ["HF_HOME"] = HF_CACHE
|
22 |
+
# Add HuggingFace token if needed
|
23 |
+
# os.environ["HF_TOKEN"] = "your-huggingface-api-token"
|
24 |
|
25 |
from chromadb import PersistentClient
|
26 |
from chromadb.utils.data_loaders import ImageLoader
|
|
|
31 |
IMAGES_DIR = os.path.join(TEMP_DIR, "extracted_images")
|
32 |
DB_PATH = os.path.join(TEMP_DIR, "image_vdb")
|
33 |
os.makedirs(IMAGES_DIR, exist_ok=True)
|
34 |
+
os.makedirs(DB_PATH, exist_ok=True)
|
35 |
|
36 |
# Init ChromaDB collection
|
37 |
@st.cache_resource
|
38 |
def get_chroma_collection():
|
39 |
+
try:
|
40 |
+
chroma_client = PersistentClient(path=DB_PATH)
|
41 |
+
image_loader = ImageLoader()
|
42 |
+
embedding_fn = OpenCLIPEmbeddingFunction()
|
43 |
+
collection = chroma_client.get_or_create_collection(
|
44 |
+
name="image", embedding_function=embedding_fn, data_loader=image_loader
|
45 |
+
)
|
46 |
+
return collection
|
47 |
+
except Exception as e:
|
48 |
+
logger.error(f"Error initializing ChromaDB: {e}")
|
49 |
+
st.error(f"Failed to initialize ChromaDB: {e}")
|
50 |
+
return None
|
51 |
|
52 |
image_collection = get_chroma_collection()
|
53 |
+
if image_collection is None:
|
54 |
+
st.stop()
|
55 |
|
56 |
# --- Extract images from PDF ---
|
57 |
def extract_images_from_pdf(pdf_bytes):
|
58 |
+
try:
|
59 |
+
pdf = fitz.open(stream=pdf_bytes, filetype="pdf")
|
60 |
+
saved = []
|
61 |
+
for i in range(len(pdf)):
|
62 |
+
for img in pdf.load_page(i).get_images(full=True):
|
63 |
+
base = pdf.extract_image(img[0])
|
64 |
+
ext = base["ext"]
|
65 |
+
path = os.path.join(IMAGES_DIR, f"pdf_p{i+1}_img{img[0]}.{ext}")
|
66 |
+
with open(path, "wb") as f:
|
67 |
+
f.write(base["image"])
|
68 |
+
saved.append(path)
|
69 |
+
return saved
|
70 |
+
except Exception as e:
|
71 |
+
logger.error(f"Error extracting images from PDF: {e}")
|
72 |
+
st.error(f"Failed to extract images: {e}")
|
73 |
+
return []
|
74 |
|
75 |
# --- Index images ---
|
76 |
def index_images(paths):
|
77 |
+
try:
|
78 |
+
ids, uris = [], []
|
79 |
+
for path in sorted(paths):
|
80 |
+
if path.lower().endswith((".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".webp")):
|
81 |
+
ids.append(str(uuid.uuid4()))
|
82 |
+
uris.append(path)
|
83 |
+
if ids:
|
84 |
+
image_collection.add(ids=ids, uris=uris)
|
85 |
+
except Exception as e:
|
86 |
+
logger.error(f"Error indexing images: {e}")
|
87 |
+
st.error(f"Failed to index images: {e}")
|
88 |
|
89 |
# --- Image-to-Image search ---
|
90 |
def query_similar_images(image_file, top_k=5):
|
91 |
+
try:
|
92 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as tmp:
|
93 |
+
tmp.write(image_file.read())
|
94 |
+
tmp.flush()
|
95 |
+
res = image_collection.query(query_uris=[tmp.name], n_results=top_k)
|
96 |
+
os.remove(tmp.name)
|
97 |
+
if not res or 'uris' not in res or not res['uris'] or not res['uris'][0]:
|
98 |
+
return []
|
99 |
+
return res['uris'][0]
|
100 |
+
except Exception as e:
|
101 |
+
logger.error(f"Error in image-to-image search: {e}")
|
102 |
+
st.error(f"Failed to perform image search: {e}")
|
103 |
return []
|
|
|
104 |
|
105 |
# --- Text-to-Image search ---
|
106 |
def search_images_by_text(text, top_k=5):
|
107 |
+
try:
|
108 |
+
res = image_collection.query(query_texts=[text], n_results=top_k)
|
109 |
+
if not res or 'uris' not in res or not res['uris'] or not res['uris'][0]:
|
110 |
+
return []
|
111 |
+
return res['uris'][0]
|
112 |
+
except Exception as e:
|
113 |
+
logger.error(f"Error in text-to-image search: {e}")
|
114 |
+
st.error(f"Failed to perform text search: {e}")
|
115 |
return []
|
|
|
116 |
|
117 |
# --- Load CIFAR-10 Demo Dataset (500 images) ---
|
118 |
@st.cache_resource
|
119 |
def load_demo_cifar10(n=500):
|
120 |
+
try:
|
121 |
+
dataset = CIFAR10(root=TEMP_DIR, download=True, train=True)
|
122 |
+
transform = T.ToPILImage()
|
123 |
+
saved = []
|
124 |
+
|
125 |
+
progress_bar = st.progress(0)
|
126 |
+
for i in range(min(n, len(dataset))):
|
127 |
+
img, label = dataset[i]
|
128 |
+
if not isinstance(img, Image.Image):
|
129 |
+
img = transform(img)
|
130 |
+
path = os.path.join(IMAGES_DIR, f"cifar10_{i}_{label}.png")
|
131 |
+
img.save(path)
|
132 |
+
saved.append(path)
|
133 |
+
if i % 10 == 0 or i == n - 1:
|
134 |
+
progress_bar.progress((i + 1) / n)
|
135 |
+
return saved
|
136 |
+
except Exception as e:
|
137 |
+
logger.error(f"Error loading CIFAR-10 dataset: {e}")
|
138 |
+
st.error(f"Failed to load CIFAR-10 dataset: {e}")
|
139 |
+
return []
|
140 |
|
141 |
# === UI START ===
|
142 |
st.title("🔍 Semantic Image Search App")
|
|
|
149 |
if pdf:
|
150 |
with st.spinner("Extracting images from PDF..."):
|
151 |
imgs = extract_images_from_pdf(pdf.read())
|
152 |
+
if imgs:
|
153 |
+
index_images(imgs)
|
154 |
+
st.success(f"✅ Indexed {len(imgs)} images from PDF.")
|
155 |
+
st.image(imgs, width=120)
|
156 |
+
else:
|
157 |
+
st.warning("No images extracted from PDF.")
|
158 |
|
159 |
elif choice == "Upload Images":
|
160 |
imgs = st.file_uploader("📤 Upload image files", type=["jpg", "jpeg", "png", "bmp", "tiff", "webp"], accept_multiple_files=True)
|
|
|
174 |
if st.button("🔄 Load 500 CIFAR‑10 Images"):
|
175 |
with st.spinner("Loading CIFAR‑10 demo dataset..."):
|
176 |
paths = load_demo_cifar10(500)
|
177 |
+
if paths:
|
178 |
+
index_images(paths)
|
179 |
+
st.success("✅ 500 demo images loaded and indexed.")
|
180 |
+
st.image(paths[:20], width=100)
|
181 |
+
else:
|
182 |
+
st.warning("Failed to load CIFAR-10 images.")
|
183 |
|
184 |
# Step 2: Search
|
185 |
st.divider()
|
|
|
207 |
else:
|
208 |
st.subheader("🔍 Semantic Matches:")
|
209 |
for u in results:
|
210 |
+
st.image(u, width=150)
|