Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +93 -28
src/streamlit_app.py
CHANGED
@@ -4,21 +4,45 @@ import clip
|
|
4 |
from PIL import Image
|
5 |
import os
|
6 |
import numpy as np
|
|
|
|
|
7 |
|
8 |
# Initialize session state
|
9 |
if 'model' not in st.session_state:
|
10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
st.session_state.model = model
|
13 |
st.session_state.preprocess = preprocess
|
14 |
st.session_state.device = device
|
15 |
st.session_state.demo_images = []
|
16 |
-
st.session_state.demo_encodings = []
|
17 |
st.session_state.demo_image_paths = []
|
18 |
st.session_state.user_images = []
|
19 |
-
st.session_state.user_encodings = []
|
20 |
|
21 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
if not st.session_state.demo_images:
|
23 |
demo_folder = "demo_images"
|
24 |
if os.path.exists(demo_folder):
|
@@ -26,10 +50,31 @@ if not st.session_state.demo_images:
|
|
26 |
if len(demo_image_paths) > 0:
|
27 |
st.session_state.demo_image_paths = demo_image_paths
|
28 |
st.session_state.demo_images = [Image.open(path) for path in demo_image_paths]
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
else:
|
34 |
st.warning("No images found in 'demo_images' folder. Demo mode will be limited.")
|
35 |
|
@@ -45,26 +90,32 @@ if mode == "Search in My Images":
|
|
45 |
uploaded_files = st.file_uploader("Choose images", type=['png', 'jpg', 'jpeg'], accept_multiple_files=True)
|
46 |
|
47 |
if uploaded_files:
|
48 |
-
#
|
49 |
st.session_state.user_images = []
|
50 |
-
st.session_state.
|
51 |
|
52 |
-
for uploaded_file in uploaded_files:
|
53 |
img = Image.open(uploaded_file)
|
54 |
st.session_state.user_images.append(img)
|
55 |
img_pre = st.session_state.preprocess(img).unsqueeze(0).to(st.session_state.device)
|
56 |
with torch.no_grad():
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
-
if st.session_state.
|
61 |
-
st.session_state.user_encodings = torch.cat(st.session_state.user_encodings, dim=0)
|
62 |
st.success(f"Uploaded {len(st.session_state.user_images)} images successfully.")
|
63 |
else:
|
64 |
st.warning("No images uploaded yet.")
|
65 |
|
66 |
# Query image upload
|
67 |
-
st.subheader("Upload Query Image")
|
68 |
query_file = st.file_uploader("Choose a query image", type=['png', 'jpg', 'jpeg'])
|
69 |
|
70 |
if query_file is not None:
|
@@ -72,30 +123,44 @@ if query_file is not None:
|
|
72 |
st.image(query_img, caption="Query Image", width=200)
|
73 |
query_pre = st.session_state.preprocess(query_img).unsqueeze(0).to(st.session_state.device)
|
74 |
with torch.no_grad():
|
75 |
-
|
76 |
|
77 |
if mode == "Search in Demo Images":
|
78 |
-
if st.session_state.
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
st.subheader("Top 5 Similar Images")
|
83 |
cols = st.columns(5)
|
84 |
-
for i, idx in enumerate(
|
|
|
85 |
with cols[i]:
|
86 |
-
st.image(st.session_state.demo_images[
|
87 |
else:
|
88 |
st.error("No demo images available. Please check the 'demo_images' folder.")
|
89 |
|
90 |
elif mode == "Search in My Images":
|
91 |
-
if st.session_state.
|
92 |
-
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
st.subheader("Top 5 Similar Images")
|
96 |
cols = st.columns(5)
|
97 |
-
for i, idx in enumerate(
|
|
|
98 |
with cols[i]:
|
99 |
-
st.image(st.session_state.user_images[
|
100 |
else:
|
101 |
-
st.error("No user images uploaded yet. Please upload images first.")
|
|
|
4 |
from PIL import Image
|
5 |
import os
|
6 |
import numpy as np
|
7 |
+
import chromadb
|
8 |
+
from chromadb.utils import embedding_functions
|
9 |
|
10 |
# Initialize session state
|
11 |
if 'model' not in st.session_state:
|
12 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
+
# Set a custom cache directory for CLIP model weights
|
14 |
+
cache_dir = "./clip_cache"
|
15 |
+
os.makedirs(cache_dir, exist_ok=True) # Create cache directory if it doesn't exist
|
16 |
+
try:
|
17 |
+
model, preprocess = clip.load("ViT-B/32", device=device, download_root=cache_dir)
|
18 |
+
except Exception as e:
|
19 |
+
st.error(f"Failed to load CLIP model: {e}")
|
20 |
+
st.stop()
|
21 |
st.session_state.model = model
|
22 |
st.session_state.preprocess = preprocess
|
23 |
st.session_state.device = device
|
24 |
st.session_state.demo_images = []
|
|
|
25 |
st.session_state.demo_image_paths = []
|
26 |
st.session_state.user_images = []
|
|
|
27 |
|
28 |
+
# Initialize ChromaDB client
|
29 |
+
if 'chroma_client' not in st.session_state:
|
30 |
+
try:
|
31 |
+
st.session_state.chroma_client = chromadb.PersistentClient(path="./chroma_db")
|
32 |
+
# Create or get collections
|
33 |
+
st.session_state.demo_collection = st.session_state.chroma_client.get_or_create_collection(
|
34 |
+
name="demo_images",
|
35 |
+
metadata={"hnsw:space": "cosine"} # Use cosine similarity
|
36 |
+
)
|
37 |
+
st.session_state.user_collection = st.session_state.chroma_client.get_or_create_collection(
|
38 |
+
name="user_images",
|
39 |
+
metadata={"hnsw:space": "cosine"}
|
40 |
+
)
|
41 |
+
except Exception as e:
|
42 |
+
st.error(f"Failed to initialize ChromaDB collections: {e}")
|
43 |
+
st.stop()
|
44 |
+
|
45 |
+
# Load demo images into ChromaDB
|
46 |
if not st.session_state.demo_images:
|
47 |
demo_folder = "demo_images"
|
48 |
if os.path.exists(demo_folder):
|
|
|
50 |
if len(demo_image_paths) > 0:
|
51 |
st.session_state.demo_image_paths = demo_image_paths
|
52 |
st.session_state.demo_images = [Image.open(path) for path in demo_image_paths]
|
53 |
+
|
54 |
+
# Clear existing demo collection to avoid duplicates
|
55 |
+
st.session_state.demo_collection.delete(ids=[str(i) for i in range(len(demo_image_paths))])
|
56 |
+
|
57 |
+
# Compute and store embeddings
|
58 |
+
embeddings = []
|
59 |
+
ids = []
|
60 |
+
metadatas = []
|
61 |
+
for i, img in enumerate(st.session_state.demo_images):
|
62 |
+
img_pre = st.session_state.preprocess(img).unsqueeze(0).to(st.session_state.device)
|
63 |
+
with torch.no_grad():
|
64 |
+
embedding = st.session_state.model.encode_image(img_pre).cpu().numpy().flatten()
|
65 |
+
embeddings.append(embedding)
|
66 |
+
ids.append(str(i))
|
67 |
+
metadatas.append({"path": demo_image_paths[i]})
|
68 |
+
|
69 |
+
# Add to ChromaDB
|
70 |
+
try:
|
71 |
+
st.session_state.demo_collection.add(
|
72 |
+
embeddings=embeddings,
|
73 |
+
ids=ids,
|
74 |
+
metadatas=metadatas
|
75 |
+
)
|
76 |
+
except Exception as e:
|
77 |
+
st.error(f"Failed to add demo images to ChromaDB: {e}")
|
78 |
else:
|
79 |
st.warning("No images found in 'demo_images' folder. Demo mode will be limited.")
|
80 |
|
|
|
90 |
uploaded_files = st.file_uploader("Choose images", type=['png', 'jpg', 'jpeg'], accept_multiple_files=True)
|
91 |
|
92 |
if uploaded_files:
|
93 |
+
# Clear_previous user images and collection
|
94 |
st.session_state.user_images = []
|
95 |
+
st.session_state.user_collection.delete(ids=[str(i) for i in range(st.session_state.user_collection.count())])
|
96 |
|
97 |
+
for i, uploaded_file in enumerate(uploaded_files):
|
98 |
img = Image.open(uploaded_file)
|
99 |
st.session_state.user_images.append(img)
|
100 |
img_pre = st.session_state.preprocess(img).unsqueeze(0).to(st.session_state.device)
|
101 |
with torch.no_grad():
|
102 |
+
embedding = st.session_state.model.encode_image(img_pre).cpu().numpy().flatten()
|
103 |
+
try:
|
104 |
+
st.session_state.user_collection.add(
|
105 |
+
embeddings=[embedding],
|
106 |
+
ids=[str(i)],
|
107 |
+
metadatas=[{"index": i}]
|
108 |
+
)
|
109 |
+
except Exception as e:
|
110 |
+
st.error(f"Failed to add user image {i} to ChromaDB: {e}")
|
111 |
|
112 |
+
if st.session_state.user_collection.count() > 0:
|
|
|
113 |
st.success(f"Uploaded {len(st.session_state.user_images)} images successfully.")
|
114 |
else:
|
115 |
st.warning("No images uploaded yet.")
|
116 |
|
117 |
# Query image upload
|
118 |
+
st.subheader Snip: st.subheader("Upload Query Image")
|
119 |
query_file = st.file_uploader("Choose a query image", type=['png', 'jpg', 'jpeg'])
|
120 |
|
121 |
if query_file is not None:
|
|
|
123 |
st.image(query_img, caption="Query Image", width=200)
|
124 |
query_pre = st.session_state.preprocess(query_img).unsqueeze(0).to(st.session_state.device)
|
125 |
with torch.no_grad():
|
126 |
+
query_embedding = st.session_state.model.encode_image(query_pre).cpu().numpy().flatten()
|
127 |
|
128 |
if mode == "Search in Demo Images":
|
129 |
+
if st.session_state.demo_collection.count() > 0:
|
130 |
+
# Query ChromaDB
|
131 |
+
results = st.session_state.demo_collection.query(
|
132 |
+
query_embeddings=[query_embedding],
|
133 |
+
n_results=min(5, st.session_state.demo_collection.count())
|
134 |
+
)
|
135 |
+
distances = results['distances'][0]
|
136 |
+
ids = results['ids'][0]
|
137 |
+
similarities = [1 - dist for dist in distances] # Convert distance to similarity
|
138 |
|
139 |
st.subheader("Top 5 Similar Images")
|
140 |
cols = st.columns(5)
|
141 |
+
for i, (idx, sim) in enumerate(zip(ids, similarities)):
|
142 |
+
img_idx = int(idx)
|
143 |
with cols[i]:
|
144 |
+
st.image(st.session_state.demo_images[img_idx], caption=f"Similarity: {sim:.4f}", width=150)
|
145 |
else:
|
146 |
st.error("No demo images available. Please check the 'demo_images' folder.")
|
147 |
|
148 |
elif mode == "Search in My Images":
|
149 |
+
if st.session_state.user_collection.count() > 0:
|
150 |
+
# Query ChromaDB
|
151 |
+
results = st.session_state.user_collection.query(
|
152 |
+
query_embeddings=[query_embedding],
|
153 |
+
n_results=min(5, st.session_state.user_collection.count())
|
154 |
+
)
|
155 |
+
distances = results['distances'][0]
|
156 |
+
ids = results['ids'][0]
|
157 |
+
similarities = [1 - dist for dist in distances] # Convert distance to similarity
|
158 |
|
159 |
st.subheader("Top 5 Similar Images")
|
160 |
cols = st.columns(5)
|
161 |
+
for i, (idx, sim) in enumerate(zip(ids, similarities)):
|
162 |
+
img_idx = int(idx)
|
163 |
with cols[i]:
|
164 |
+
st.image(st.session_state.user_images[img_idx], caption=f"Similarity: {sim:.4f}", width=150)
|
165 |
else:
|
166 |
+
st.error("No user images uploaded yet. Please upload images first.")
|