Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +37 -16
src/streamlit_app.py
CHANGED
@@ -6,17 +6,19 @@ import os
|
|
6 |
import numpy as np
|
7 |
import chromadb
|
8 |
from chromadb.utils import embedding_functions
|
9 |
-
import tempfile
|
10 |
|
11 |
-
#
|
12 |
if 'model' not in st.session_state:
|
13 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
-
cache_dir = tempfile.gettempdir()
|
|
|
15 |
try:
|
16 |
model, preprocess = clip.load("ViT-B/32", device=device, download_root=cache_dir)
|
17 |
except Exception as e:
|
18 |
st.error(f"Failed to load CLIP model: {e}")
|
19 |
st.stop()
|
|
|
20 |
st.session_state.model = model
|
21 |
st.session_state.preprocess = preprocess
|
22 |
st.session_state.device = device
|
@@ -24,10 +26,12 @@ if 'model' not in st.session_state:
|
|
24 |
st.session_state.demo_image_paths = []
|
25 |
st.session_state.user_images = []
|
26 |
|
27 |
-
# Initialize ChromaDB
|
28 |
if 'chroma_client' not in st.session_state:
|
29 |
try:
|
30 |
-
|
|
|
|
|
31 |
st.session_state.demo_collection = st.session_state.chroma_client.get_or_create_collection(
|
32 |
name="demo_images", metadata={"hnsw:space": "cosine"}
|
33 |
)
|
@@ -38,15 +42,22 @@ if 'chroma_client' not in st.session_state:
|
|
38 |
st.error(f"Failed to initialize ChromaDB: {e}")
|
39 |
st.stop()
|
40 |
|
41 |
-
# Load
|
42 |
if not st.session_state.get("demo_images_loaded", False):
|
43 |
demo_folder = "demo_images"
|
44 |
if os.path.exists(demo_folder):
|
45 |
-
demo_image_paths = [os.path.join(demo_folder, f) for f in os.listdir(demo_folder)
|
|
|
|
|
46 |
if demo_image_paths:
|
47 |
st.session_state.demo_image_paths = demo_image_paths
|
48 |
st.session_state.demo_images = [Image.open(path).convert("RGB") for path in demo_image_paths]
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
embeddings, ids, metadatas = [], [], []
|
52 |
for i, img in enumerate(st.session_state.demo_images):
|
@@ -71,27 +82,34 @@ if not st.session_state.get("demo_images_loaded", False):
|
|
71 |
else:
|
72 |
st.warning("Folder 'demo_images' does not exist.")
|
73 |
|
74 |
-
# UI
|
75 |
st.title("π Image Search with CLIP")
|
76 |
-
|
77 |
-
# Mode selection
|
78 |
mode = st.radio("Select mode", ("Search in Demo Images", "Search in My Images"))
|
79 |
|
80 |
-
# Upload
|
81 |
if mode == "Search in My Images":
|
82 |
st.subheader("Upload Your Images")
|
83 |
uploaded_files = st.file_uploader("Choose images", type=['png', 'jpg', 'jpeg'], accept_multiple_files=True)
|
84 |
|
85 |
if uploaded_files:
|
86 |
st.session_state.user_images = []
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
for i, uploaded_file in enumerate(uploaded_files):
|
90 |
img = Image.open(uploaded_file).convert("RGB")
|
91 |
st.session_state.user_images.append(img)
|
|
|
92 |
img_pre = st.session_state.preprocess(img).unsqueeze(0).to(st.session_state.device)
|
93 |
with torch.no_grad():
|
94 |
embedding = st.session_state.model.encode_image(img_pre).cpu().numpy().flatten()
|
|
|
95 |
try:
|
96 |
st.session_state.user_collection.add(
|
97 |
embeddings=[embedding],
|
@@ -106,17 +124,19 @@ if mode == "Search in My Images":
|
|
106 |
else:
|
107 |
st.warning("Upload failed.")
|
108 |
|
109 |
-
# Query
|
110 |
st.subheader("Upload Query Image")
|
111 |
query_file = st.file_uploader("Choose a query image", type=['png', 'jpg', 'jpeg'])
|
112 |
|
113 |
if query_file is not None:
|
114 |
query_img = Image.open(query_file).convert("RGB")
|
115 |
st.image(query_img, caption="Query Image", width=200)
|
|
|
116 |
query_pre = st.session_state.preprocess(query_img).unsqueeze(0).to(st.session_state.device)
|
117 |
with torch.no_grad():
|
118 |
query_embedding = st.session_state.model.encode_image(query_pre).cpu().numpy().flatten()
|
119 |
|
|
|
120 |
if mode == "Search in Demo Images":
|
121 |
if st.session_state.demo_collection.count() > 0:
|
122 |
results = st.session_state.demo_collection.query(
|
@@ -132,10 +152,11 @@ if query_file is not None:
|
|
132 |
for i, (idx, sim) in enumerate(zip(ids, similarities)):
|
133 |
img_idx = int(idx)
|
134 |
with cols[i]:
|
135 |
-
st.image(st.session_state.demo_images[img_idx], caption=f"
|
136 |
else:
|
137 |
st.error("No demo images available.")
|
138 |
|
|
|
139 |
elif mode == "Search in My Images":
|
140 |
if st.session_state.user_collection.count() > 0:
|
141 |
results = st.session_state.user_collection.query(
|
@@ -151,6 +172,6 @@ if query_file is not None:
|
|
151 |
for i, (idx, sim) in enumerate(zip(ids, similarities)):
|
152 |
img_idx = int(idx)
|
153 |
with cols[i]:
|
154 |
-
st.image(st.session_state.user_images[img_idx], caption=f"
|
155 |
else:
|
156 |
st.error("Please upload some images first.")
|
|
|
6 |
import numpy as np
|
7 |
import chromadb
|
8 |
from chromadb.utils import embedding_functions
|
9 |
+
import tempfile
|
10 |
|
11 |
+
# ----- Session Initialization -----
|
12 |
if 'model' not in st.session_state:
|
13 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
+
cache_dir = tempfile.gettempdir()
|
15 |
+
|
16 |
try:
|
17 |
model, preprocess = clip.load("ViT-B/32", device=device, download_root=cache_dir)
|
18 |
except Exception as e:
|
19 |
st.error(f"Failed to load CLIP model: {e}")
|
20 |
st.stop()
|
21 |
+
|
22 |
st.session_state.model = model
|
23 |
st.session_state.preprocess = preprocess
|
24 |
st.session_state.device = device
|
|
|
26 |
st.session_state.demo_image_paths = []
|
27 |
st.session_state.user_images = []
|
28 |
|
29 |
+
# ----- Initialize ChromaDB in Temp Dir -----
|
30 |
if 'chroma_client' not in st.session_state:
|
31 |
try:
|
32 |
+
chroma_path = os.path.join(tempfile.gettempdir(), "chroma_db")
|
33 |
+
st.session_state.chroma_client = chromadb.PersistentClient(path=chroma_path)
|
34 |
+
|
35 |
st.session_state.demo_collection = st.session_state.chroma_client.get_or_create_collection(
|
36 |
name="demo_images", metadata={"hnsw:space": "cosine"}
|
37 |
)
|
|
|
42 |
st.error(f"Failed to initialize ChromaDB: {e}")
|
43 |
st.stop()
|
44 |
|
45 |
+
# ----- Load Demo Images -----
|
46 |
if not st.session_state.get("demo_images_loaded", False):
|
47 |
demo_folder = "demo_images"
|
48 |
if os.path.exists(demo_folder):
|
49 |
+
demo_image_paths = [os.path.join(demo_folder, f) for f in os.listdir(demo_folder)
|
50 |
+
if f.lower().endswith(('.png', '.jpg', '.jpeg'))]
|
51 |
+
|
52 |
if demo_image_paths:
|
53 |
st.session_state.demo_image_paths = demo_image_paths
|
54 |
st.session_state.demo_images = [Image.open(path).convert("RGB") for path in demo_image_paths]
|
55 |
+
|
56 |
+
# Clear previous collection
|
57 |
+
try:
|
58 |
+
st.session_state.demo_collection.delete(ids=[str(i) for i in range(len(demo_image_paths))])
|
59 |
+
except:
|
60 |
+
pass # Collection might be empty
|
61 |
|
62 |
embeddings, ids, metadatas = [], [], []
|
63 |
for i, img in enumerate(st.session_state.demo_images):
|
|
|
82 |
else:
|
83 |
st.warning("Folder 'demo_images' does not exist.")
|
84 |
|
85 |
+
# ----- UI -----
|
86 |
st.title("π Image Search with CLIP")
|
|
|
|
|
87 |
mode = st.radio("Select mode", ("Search in Demo Images", "Search in My Images"))
|
88 |
|
89 |
+
# ----- Upload My Images -----
|
90 |
if mode == "Search in My Images":
|
91 |
st.subheader("Upload Your Images")
|
92 |
uploaded_files = st.file_uploader("Choose images", type=['png', 'jpg', 'jpeg'], accept_multiple_files=True)
|
93 |
|
94 |
if uploaded_files:
|
95 |
st.session_state.user_images = []
|
96 |
+
|
97 |
+
# Clear user collection
|
98 |
+
try:
|
99 |
+
st.session_state.user_collection.delete(ids=[
|
100 |
+
str(i) for i in range(st.session_state.user_collection.count())
|
101 |
+
])
|
102 |
+
except:
|
103 |
+
pass
|
104 |
|
105 |
for i, uploaded_file in enumerate(uploaded_files):
|
106 |
img = Image.open(uploaded_file).convert("RGB")
|
107 |
st.session_state.user_images.append(img)
|
108 |
+
|
109 |
img_pre = st.session_state.preprocess(img).unsqueeze(0).to(st.session_state.device)
|
110 |
with torch.no_grad():
|
111 |
embedding = st.session_state.model.encode_image(img_pre).cpu().numpy().flatten()
|
112 |
+
|
113 |
try:
|
114 |
st.session_state.user_collection.add(
|
115 |
embeddings=[embedding],
|
|
|
124 |
else:
|
125 |
st.warning("Upload failed.")
|
126 |
|
127 |
+
# ----- Query Image -----
|
128 |
st.subheader("Upload Query Image")
|
129 |
query_file = st.file_uploader("Choose a query image", type=['png', 'jpg', 'jpeg'])
|
130 |
|
131 |
if query_file is not None:
|
132 |
query_img = Image.open(query_file).convert("RGB")
|
133 |
st.image(query_img, caption="Query Image", width=200)
|
134 |
+
|
135 |
query_pre = st.session_state.preprocess(query_img).unsqueeze(0).to(st.session_state.device)
|
136 |
with torch.no_grad():
|
137 |
query_embedding = st.session_state.model.encode_image(query_pre).cpu().numpy().flatten()
|
138 |
|
139 |
+
# ----- Search in Demo -----
|
140 |
if mode == "Search in Demo Images":
|
141 |
if st.session_state.demo_collection.count() > 0:
|
142 |
results = st.session_state.demo_collection.query(
|
|
|
152 |
for i, (idx, sim) in enumerate(zip(ids, similarities)):
|
153 |
img_idx = int(idx)
|
154 |
with cols[i]:
|
155 |
+
st.image(st.session_state.demo_images[img_idx], caption=f"Sim: {sim:.4f}", width=150)
|
156 |
else:
|
157 |
st.error("No demo images available.")
|
158 |
|
159 |
+
# ----- Search in User Uploads -----
|
160 |
elif mode == "Search in My Images":
|
161 |
if st.session_state.user_collection.count() > 0:
|
162 |
results = st.session_state.user_collection.query(
|
|
|
172 |
for i, (idx, sim) in enumerate(zip(ids, similarities)):
|
173 |
img_idx = int(idx)
|
174 |
with cols[i]:
|
175 |
+
st.image(st.session_state.user_images[img_idx], caption=f"Sim: {sim:.4f}", width=150)
|
176 |
else:
|
177 |
st.error("Please upload some images first.")
|