Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +77 -28
src/streamlit_app.py
CHANGED
@@ -1,26 +1,29 @@
|
|
1 |
import os
|
2 |
-
import fitz
|
3 |
-
import chromadb
|
4 |
import tempfile
|
5 |
import streamlit as st
|
6 |
from PIL import Image
|
|
|
7 |
from chromadb.utils.data_loaders import ImageLoader
|
8 |
from chromadb.utils.embedding_functions import OpenCLIPEmbeddingFunction
|
|
|
|
|
|
|
9 |
|
10 |
# Paths
|
11 |
DB_PATH = './data/image_vdb'
|
12 |
IMAGES_DIR = './data/extracted_images'
|
13 |
os.makedirs(IMAGES_DIR, exist_ok=True)
|
14 |
|
15 |
-
# Init
|
16 |
-
chroma_client =
|
17 |
image_loader = ImageLoader()
|
18 |
embedding_fn = OpenCLIPEmbeddingFunction()
|
19 |
image_collection = chroma_client.get_or_create_collection(
|
20 |
name="image", embedding_function=embedding_fn, data_loader=image_loader
|
21 |
)
|
22 |
|
23 |
-
#
|
24 |
def extract_images_from_pdf(pdf_bytes):
|
25 |
pdf = fitz.open(stream=pdf_bytes, filetype="pdf")
|
26 |
saved_images = []
|
@@ -44,13 +47,12 @@ def extract_images_from_pdf(pdf_bytes):
|
|
44 |
|
45 |
return saved_images
|
46 |
|
47 |
-
def
|
48 |
ids = []
|
49 |
uris = []
|
50 |
-
|
51 |
for i, path in enumerate(sorted(image_paths)):
|
52 |
if path.endswith((".png", ".jpeg", ".jpg")):
|
53 |
-
ids.append(
|
54 |
uris.append(path)
|
55 |
|
56 |
if ids:
|
@@ -65,27 +67,74 @@ def query_similar_images(image_file, top_k=5):
|
|
65 |
os.remove(tmp_path)
|
66 |
return results['uris'][0]
|
67 |
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
-
|
72 |
-
uploaded_pdf = st.file_uploader("Upload
|
73 |
-
if uploaded_pdf
|
74 |
with st.spinner("Extracting images..."):
|
75 |
-
|
76 |
-
|
77 |
-
st.success(f"
|
78 |
-
st.image(
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
st.divider()
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
|
|
|
1 |
import os
|
2 |
+
import fitz
|
|
|
3 |
import tempfile
|
4 |
import streamlit as st
|
5 |
from PIL import Image
|
6 |
+
from chromadb import PersistentClient
|
7 |
from chromadb.utils.data_loaders import ImageLoader
|
8 |
from chromadb.utils.embedding_functions import OpenCLIPEmbeddingFunction
|
9 |
+
from skimage import data as skdata
|
10 |
+
from skimage.io import imsave
|
11 |
+
import uuid
|
12 |
|
13 |
# Paths
|
14 |
DB_PATH = './data/image_vdb'
|
15 |
IMAGES_DIR = './data/extracted_images'
|
16 |
os.makedirs(IMAGES_DIR, exist_ok=True)
|
17 |
|
18 |
+
# Init ChromaDB
|
19 |
+
chroma_client = PersistentClient(path=DB_PATH)
|
20 |
image_loader = ImageLoader()
|
21 |
embedding_fn = OpenCLIPEmbeddingFunction()
|
22 |
image_collection = chroma_client.get_or_create_collection(
|
23 |
name="image", embedding_function=embedding_fn, data_loader=image_loader
|
24 |
)
|
25 |
|
26 |
+
# === Image Handling ===
|
27 |
def extract_images_from_pdf(pdf_bytes):
|
28 |
pdf = fitz.open(stream=pdf_bytes, filetype="pdf")
|
29 |
saved_images = []
|
|
|
47 |
|
48 |
return saved_images
|
49 |
|
50 |
+
def index_images(image_paths):
|
51 |
ids = []
|
52 |
uris = []
|
|
|
53 |
for i, path in enumerate(sorted(image_paths)):
|
54 |
if path.endswith((".png", ".jpeg", ".jpg")):
|
55 |
+
ids.append(str(uuid.uuid4()))
|
56 |
uris.append(path)
|
57 |
|
58 |
if ids:
|
|
|
67 |
os.remove(tmp_path)
|
68 |
return results['uris'][0]
|
69 |
|
70 |
+
def load_skimage_demo_images():
|
71 |
+
demo_images = {
|
72 |
+
"astronaut": skdata.astronaut(),
|
73 |
+
"coffee": skdata.coffee(),
|
74 |
+
"camera": skdata.camera(),
|
75 |
+
"chelsea": skdata.chelsea(),
|
76 |
+
"rocket": skdata.rocket()
|
77 |
+
}
|
78 |
+
saved_paths = []
|
79 |
+
|
80 |
+
for name, img in demo_images.items():
|
81 |
+
path = os.path.join(IMAGES_DIR, f"{name}.png")
|
82 |
+
imsave(path, img)
|
83 |
+
saved_paths.append(path)
|
84 |
+
|
85 |
+
return saved_paths
|
86 |
+
|
87 |
+
# === Streamlit UI ===
|
88 |
+
st.title("π Image Similarity Search from PDF or Custom Dataset")
|
89 |
+
|
90 |
+
# Source Selector
|
91 |
+
source = st.radio(
|
92 |
+
"Select Image Source",
|
93 |
+
["Upload PDF", "Upload Images", "Load Demo Dataset"],
|
94 |
+
horizontal=True
|
95 |
+
)
|
96 |
|
97 |
+
if source == "Upload PDF":
|
98 |
+
uploaded_pdf = st.file_uploader("π€ Upload PDF", type=["pdf"])
|
99 |
+
if uploaded_pdf:
|
100 |
with st.spinner("Extracting images..."):
|
101 |
+
images = extract_images_from_pdf(uploaded_pdf.read())
|
102 |
+
index_images(images)
|
103 |
+
st.success(f"{len(images)} images extracted and indexed.")
|
104 |
+
st.image(images, width=150)
|
105 |
+
|
106 |
+
elif source == "Upload Images":
|
107 |
+
uploaded_imgs = st.file_uploader("π€ Upload one or more images", type=["jpg", "jpeg", "png"], accept_multiple_files=True)
|
108 |
+
if uploaded_imgs:
|
109 |
+
saved_paths = []
|
110 |
+
for img in uploaded_imgs:
|
111 |
+
img_path = os.path.join(IMAGES_DIR, img.name)
|
112 |
+
with open(img_path, "wb") as f:
|
113 |
+
f.write(img.read())
|
114 |
+
saved_paths.append(img_path)
|
115 |
+
|
116 |
+
index_images(saved_paths)
|
117 |
+
st.success(f"{len(saved_paths)} images indexed.")
|
118 |
+
st.image(saved_paths, width=150)
|
119 |
+
|
120 |
+
elif source == "Load Demo Dataset":
|
121 |
+
if st.button("π Load Demo Images (skimage)"):
|
122 |
+
demo_paths = load_skimage_demo_images()
|
123 |
+
index_images(demo_paths)
|
124 |
+
st.success("Demo images loaded and indexed.")
|
125 |
+
st.image(demo_paths, width=150)
|
126 |
+
|
127 |
+
# Divider
|
128 |
st.divider()
|
129 |
|
130 |
+
# Query Interface
|
131 |
+
st.subheader("π Search for Similar Images")
|
132 |
+
query_img = st.file_uploader("Upload a query image", type=["jpg", "jpeg", "png"])
|
133 |
+
if query_img:
|
134 |
+
st.image(query_img, caption="Query Image", width=200)
|
135 |
+
with st.spinner("Searching..."):
|
136 |
+
matches = query_similar_images(query_img, top_k=5)
|
137 |
+
|
138 |
+
st.subheader("π Top Matches:")
|
139 |
+
for match in matches:
|
140 |
+
st.image(match, width=200, caption=os.path.basename(match))
|