Spaces:
No application file
No application file
from utils.qa import chain | |
import streamlit as st | |
from langchain.memory import ConversationBufferWindowMemory | |
from langchain_community.chat_message_histories import StreamlitChatMessageHistory | |
path = "mm_vdb2" | |
client = chromadb.PersistentClient(path=path) | |
image_collection = client.get_collection(name="image") | |
video_collection = client.get_collection(name='video_collection') | |
memory_storage = StreamlitChatMessageHistory(key="chat_messages") | |
memory = ConversationBufferWindowMemory(memory_key="chat_history", human_prefix="User", chat_memory=memory_storage, k=3) | |
def get_answer(query): | |
response = chain.invoke(query) | |
#return response["result"] | |
return response | |
def home(): | |
st.header("Welcome") | |
#st.set_page_config(layout='wide', page_title="Virtual Tutor") | |
st.markdown(""" | |
<svg width="600" height="100"> | |
<text x="50%" y="50%" font-family="San serif" font-size="42px" fill="Black" text-anchor="middle" stroke="white" | |
stroke-width="0.3" stroke-linejoin="round">Virtual Tutor - CHAT | |
</text> | |
</svg> | |
""", unsafe_allow_html=True) | |
if "messages" not in st.session_state: | |
st.session_state.messages = [ | |
{"role": "assistant", "content": "Hi! How may I assist you today?"} | |
] | |
st.markdown(""" | |
<style> | |
.stChatInputContainer > div { | |
background-color: #000000; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
for message in st.session_state.messages: # Display the prior chat messages | |
with st.chat_message(message["role"]): | |
st.write(message["content"]) | |
for i, msg in enumerate(memory_storage.messages): | |
name = "user" if i % 2 == 0 else "assistant" | |
st.chat_message(name).markdown(msg.content) | |
if user_input := st.chat_input("User Input"): | |
with st.chat_message("user"): | |
st.markdown(user_input) | |
with st.spinner("Generating Response..."): | |
with st.chat_message("assistant"): | |
response = get_answer(user_input) | |
answer = response['result'] | |
st.markdown(answer) | |
message = {"role": "assistant", "content": answer} | |
message_u = {"role": "user", "content": user_input} | |
st.session_state.messages.append(message_u) | |
st.session_state.messages.append(message) | |