Spaces:
No application file
No application file
Update user.py
Browse files
user.py
CHANGED
@@ -1,31 +1,30 @@
|
|
1 |
-
|
|
|
2 |
import streamlit as st
|
|
|
|
|
3 |
from langchain.memory import ConversationBufferWindowMemory
|
4 |
from langchain_community.chat_message_histories import StreamlitChatMessageHistory
|
|
|
|
|
5 |
|
|
|
6 |
path = "mm_vdb2"
|
7 |
client = chromadb.PersistentClient(path=path)
|
8 |
image_collection = client.get_collection(name="image")
|
9 |
video_collection = client.get_collection(name='video_collection')
|
10 |
|
11 |
-
|
12 |
memory_storage = StreamlitChatMessageHistory(key="chat_messages")
|
13 |
memory = ConversationBufferWindowMemory(memory_key="chat_history", human_prefix="User", chat_memory=memory_storage, k=3)
|
14 |
|
|
|
15 |
def get_answer(query):
|
16 |
response = chain.invoke(query)
|
17 |
-
|
18 |
-
return response
|
19 |
|
|
|
20 |
def display_images(image_collection, query_text, max_distance=None, debug=False):
|
21 |
-
"""
|
22 |
-
Display images in a Streamlit app based on a query.
|
23 |
-
Args:
|
24 |
-
image_collection: The image collection object for querying.
|
25 |
-
query_text (str): The text query for images.
|
26 |
-
max_distance (float, optional): Maximum allowable distance for filtering.
|
27 |
-
debug (bool, optional): Whether to print debug information.
|
28 |
-
"""
|
29 |
results = image_collection.query(
|
30 |
query_texts=[query_text],
|
31 |
n_results=10,
|
@@ -35,160 +34,79 @@ def display_images(image_collection, query_text, max_distance=None, debug=False)
|
|
35 |
uris = results['uris'][0]
|
36 |
distances = results['distances'][0]
|
37 |
|
38 |
-
# Combine uris and distances, then sort by URI in ascending order
|
39 |
sorted_results = sorted(zip(uris, distances), key=lambda x: x[0])
|
40 |
|
41 |
-
|
42 |
-
cols = st.columns(3) # Create 3 columns for the layout
|
43 |
|
44 |
for i, (uri, distance) in enumerate(sorted_results):
|
45 |
if max_distance is None or distance <= max_distance:
|
46 |
try:
|
47 |
img = PILImage.open(uri)
|
48 |
-
with cols[i % 3]:
|
49 |
-
st.image(img, use_container_width
|
50 |
except Exception as e:
|
51 |
st.error(f"Error loading image: {e}")
|
52 |
|
|
|
53 |
def display_videos_streamlit(video_collection, query_text, max_distance=None, max_results=5, debug=False):
|
54 |
-
"""
|
55 |
-
Display videos in a Streamlit app based on a query.
|
56 |
-
Args:
|
57 |
-
video_collection: The video collection object for querying.
|
58 |
-
query_text (str): The text query for videos.
|
59 |
-
max_distance (float, optional): Maximum allowable distance for filtering.
|
60 |
-
max_results (int, optional): Maximum number of results to display.
|
61 |
-
debug (bool, optional): Whether to print debug information.
|
62 |
-
"""
|
63 |
-
# Deduplication set
|
64 |
displayed_videos = set()
|
65 |
|
66 |
-
# Query the video collection with the specified text
|
67 |
results = video_collection.query(
|
68 |
query_texts=[query_text],
|
69 |
-
n_results=max_results,
|
70 |
include=['uris', 'distances', 'metadatas']
|
71 |
)
|
72 |
|
73 |
-
# Extract URIs, distances, and metadatas from the result
|
74 |
uris = results['uris'][0]
|
75 |
distances = results['distances'][0]
|
76 |
metadatas = results['metadatas'][0]
|
77 |
|
78 |
-
# Display the videos that meet the distance criteria
|
79 |
for uri, distance, metadata in zip(uris, distances, metadatas):
|
80 |
video_uri = metadata['video_uri']
|
81 |
|
82 |
-
# Check if a max_distance filter is applied and the distance is within the allowed range
|
83 |
if (max_distance is None or distance <= max_distance) and video_uri not in displayed_videos:
|
84 |
if debug:
|
85 |
st.write(f"URI: {uri} - Video URI: {video_uri} - Distance: {distance}")
|
86 |
-
st.video(video_uri)
|
87 |
-
displayed_videos.add(video_uri)
|
88 |
else:
|
89 |
if debug:
|
90 |
st.write(f"URI: {uri} - Video URI: {video_uri} - Distance: {distance} (Filtered out)")
|
91 |
|
92 |
-
|
93 |
-
def image_uris(image_collection,query_text, max_distance=None, max_results=5):
|
94 |
-
results = image_collection.query(
|
95 |
-
query_texts=[query_text],
|
96 |
-
n_results=max_results,
|
97 |
-
include=['uris', 'distances']
|
98 |
-
)
|
99 |
-
|
100 |
-
filtered_uris = []
|
101 |
-
for uri, distance in zip(results['uris'][0], results['distances'][0]):
|
102 |
-
if max_distance is None or distance <= max_distance:
|
103 |
-
filtered_uris.append(uri)
|
104 |
-
|
105 |
-
return filtered_uris
|
106 |
-
|
107 |
-
def text_uris(text_collection,query_text, max_distance=None, max_results=5):
|
108 |
-
results = text_collection.query(
|
109 |
-
query_texts=[query_text],
|
110 |
-
n_results=max_results,
|
111 |
-
include=['documents', 'distances']
|
112 |
-
)
|
113 |
-
|
114 |
-
filtered_texts = []
|
115 |
-
for doc, distance in zip(results['documents'][0], results['distances'][0]):
|
116 |
-
if max_distance is None or distance <= max_distance:
|
117 |
-
filtered_texts.append(doc)
|
118 |
-
|
119 |
-
return filtered_texts
|
120 |
-
|
121 |
-
def frame_uris(video_collection,query_text, max_distance=None, max_results=5):
|
122 |
-
results = video_collection.query(
|
123 |
-
query_texts=[query_text],
|
124 |
-
n_results=max_results,
|
125 |
-
include=['uris', 'distances']
|
126 |
-
)
|
127 |
-
|
128 |
-
filtered_uris = []
|
129 |
-
seen_folders = set()
|
130 |
-
|
131 |
-
for uri, distance in zip(results['uris'][0], results['distances'][0]):
|
132 |
-
if max_distance is None or distance <= max_distance:
|
133 |
-
folder = os.path.dirname(uri)
|
134 |
-
if folder not in seen_folders:
|
135 |
-
filtered_uris.append(uri)
|
136 |
-
seen_folders.add(folder)
|
137 |
-
|
138 |
-
if len(filtered_uris) == max_results:
|
139 |
-
break
|
140 |
-
|
141 |
-
return filtered_uris
|
142 |
-
|
143 |
-
def image_uris2(image_collection2,query_text, max_distance=None, max_results=5):
|
144 |
-
results = image_collection2.query(
|
145 |
-
query_texts=[query_text],
|
146 |
-
n_results=max_results,
|
147 |
-
include=['uris', 'distances']
|
148 |
-
)
|
149 |
-
|
150 |
-
filtered_uris = []
|
151 |
-
for uri, distance in zip(results['uris'][0], results['distances'][0]):
|
152 |
-
if max_distance is None or distance <= max_distance:
|
153 |
-
filtered_uris.append(uri)
|
154 |
-
|
155 |
-
return filtered_uris
|
156 |
-
|
157 |
def format_prompt_inputs(image_collection, video_collection, user_query):
|
158 |
-
# Get frame candidates from the video collection
|
159 |
frame_candidates = frame_uris(video_collection, user_query, max_distance=1.55)
|
160 |
-
|
161 |
-
# Get image candidates from the image collection
|
162 |
image_candidates = image_uris(image_collection, user_query, max_distance=1.5)
|
163 |
|
164 |
-
# Initialize the inputs dictionary with just the query
|
165 |
inputs = {"query": user_query}
|
166 |
|
167 |
-
# Add the frame if found
|
168 |
frame = frame_candidates[0] if frame_candidates else ""
|
169 |
inputs["frame"] = frame
|
170 |
|
171 |
-
# If image candidates exist, process the first image
|
172 |
if image_candidates:
|
173 |
image = image_candidates[0]
|
174 |
with PILImage.open(image) as img:
|
175 |
-
img = img.resize((img.width // 6, img.height // 6))
|
176 |
-
img = img.convert("L")
|
177 |
with io.BytesIO() as output:
|
178 |
-
img.save(output, format="JPEG", quality=60)
|
179 |
compressed_image_data = output.getvalue()
|
180 |
|
181 |
-
# Encode the compressed image as base64
|
182 |
inputs["image_data_1"] = base64.b64encode(compressed_image_data).decode('utf-8')
|
183 |
else:
|
184 |
inputs["image_data_1"] = ""
|
185 |
|
186 |
return inputs
|
187 |
|
188 |
-
|
189 |
def home():
|
190 |
-
|
191 |
-
|
|
|
|
|
|
|
|
|
|
|
192 |
st.markdown("""
|
193 |
<svg width="600" height="100">
|
194 |
<text x="50%" y="50%" font-family="San serif" font-size="42px" fill="Black" text-anchor="middle" stroke="white"
|
@@ -197,11 +115,11 @@ def home():
|
|
197 |
</svg>
|
198 |
""", unsafe_allow_html=True)
|
199 |
|
|
|
200 |
if "messages" not in st.session_state:
|
201 |
-
st.session_state.messages = [
|
202 |
-
{"role": "assistant", "content": "Hi! How may I assist you today?"}
|
203 |
-
]
|
204 |
|
|
|
205 |
st.markdown("""
|
206 |
<style>
|
207 |
.stChatInputContainer > div {
|
@@ -210,38 +128,51 @@ def home():
|
|
210 |
</style>
|
211 |
""", unsafe_allow_html=True)
|
212 |
|
213 |
-
|
|
|
214 |
with st.chat_message(message["role"]):
|
215 |
st.write(message["content"])
|
216 |
|
|
|
217 |
for i, msg in enumerate(memory_storage.messages):
|
218 |
name = "user" if i % 2 == 0 else "assistant"
|
219 |
st.chat_message(name).markdown(msg.content)
|
220 |
|
221 |
-
|
|
|
222 |
with st.chat_message("user"):
|
223 |
st.markdown(user_input)
|
224 |
|
225 |
with st.spinner("Generating Response..."):
|
226 |
with st.chat_message("assistant"):
|
227 |
response = get_answer(user_input)
|
228 |
-
answer = response
|
229 |
st.markdown(answer)
|
230 |
-
|
|
|
231 |
message = {"role": "assistant", "content": answer}
|
232 |
message_u = {"role": "user", "content": user_input}
|
233 |
st.session_state.messages.append(message_u)
|
234 |
st.session_state.messages.append(message)
|
235 |
-
|
|
|
|
|
|
|
|
|
236 |
st.markdown("### Images")
|
237 |
-
display_images(image_collection,
|
|
|
|
|
238 |
st.markdown("### Videos")
|
239 |
frame = inputs["frame"]
|
240 |
if frame:
|
241 |
-
directory_name = frame.split('/')[1]
|
242 |
video_path = f"videos_flattened/{directory_name}.mp4"
|
243 |
if os.path.exists(video_path):
|
244 |
st.video(video_path)
|
245 |
else:
|
246 |
-
st.
|
247 |
-
|
|
|
|
|
|
|
|
1 |
+
import chromadb
|
2 |
+
from PIL import Image as PILImage
|
3 |
import streamlit as st
|
4 |
+
import os
|
5 |
+
from utils.qa import chain
|
6 |
from langchain.memory import ConversationBufferWindowMemory
|
7 |
from langchain_community.chat_message_histories import StreamlitChatMessageHistory
|
8 |
+
import base64
|
9 |
+
import io
|
10 |
|
11 |
+
# Initialize Chromadb client
|
12 |
path = "mm_vdb2"
|
13 |
client = chromadb.PersistentClient(path=path)
|
14 |
image_collection = client.get_collection(name="image")
|
15 |
video_collection = client.get_collection(name='video_collection')
|
16 |
|
17 |
+
# Set up memory storage for the chat
|
18 |
memory_storage = StreamlitChatMessageHistory(key="chat_messages")
|
19 |
memory = ConversationBufferWindowMemory(memory_key="chat_history", human_prefix="User", chat_memory=memory_storage, k=3)
|
20 |
|
21 |
+
# Function to get an answer from the chain
|
22 |
def get_answer(query):
|
23 |
response = chain.invoke(query)
|
24 |
+
return response.get("result", "No result found.")
|
|
|
25 |
|
26 |
+
# Function to display images in the UI
|
27 |
def display_images(image_collection, query_text, max_distance=None, debug=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
results = image_collection.query(
|
29 |
query_texts=[query_text],
|
30 |
n_results=10,
|
|
|
34 |
uris = results['uris'][0]
|
35 |
distances = results['distances'][0]
|
36 |
|
|
|
37 |
sorted_results = sorted(zip(uris, distances), key=lambda x: x[0])
|
38 |
|
39 |
+
cols = st.columns(3)
|
|
|
40 |
|
41 |
for i, (uri, distance) in enumerate(sorted_results):
|
42 |
if max_distance is None or distance <= max_distance:
|
43 |
try:
|
44 |
img = PILImage.open(uri)
|
45 |
+
with cols[i % 3]:
|
46 |
+
st.image(img, use_container_width=True)
|
47 |
except Exception as e:
|
48 |
st.error(f"Error loading image: {e}")
|
49 |
|
50 |
+
# Function to display videos in the UI
|
51 |
def display_videos_streamlit(video_collection, query_text, max_distance=None, max_results=5, debug=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
displayed_videos = set()
|
53 |
|
|
|
54 |
results = video_collection.query(
|
55 |
query_texts=[query_text],
|
56 |
+
n_results=max_results,
|
57 |
include=['uris', 'distances', 'metadatas']
|
58 |
)
|
59 |
|
|
|
60 |
uris = results['uris'][0]
|
61 |
distances = results['distances'][0]
|
62 |
metadatas = results['metadatas'][0]
|
63 |
|
|
|
64 |
for uri, distance, metadata in zip(uris, distances, metadatas):
|
65 |
video_uri = metadata['video_uri']
|
66 |
|
|
|
67 |
if (max_distance is None or distance <= max_distance) and video_uri not in displayed_videos:
|
68 |
if debug:
|
69 |
st.write(f"URI: {uri} - Video URI: {video_uri} - Distance: {distance}")
|
70 |
+
st.video(video_uri)
|
71 |
+
displayed_videos.add(video_uri)
|
72 |
else:
|
73 |
if debug:
|
74 |
st.write(f"URI: {uri} - Video URI: {video_uri} - Distance: {distance} (Filtered out)")
|
75 |
|
76 |
+
# Function to format the inputs for image and video processing
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
def format_prompt_inputs(image_collection, video_collection, user_query):
|
|
|
78 |
frame_candidates = frame_uris(video_collection, user_query, max_distance=1.55)
|
|
|
|
|
79 |
image_candidates = image_uris(image_collection, user_query, max_distance=1.5)
|
80 |
|
|
|
81 |
inputs = {"query": user_query}
|
82 |
|
|
|
83 |
frame = frame_candidates[0] if frame_candidates else ""
|
84 |
inputs["frame"] = frame
|
85 |
|
|
|
86 |
if image_candidates:
|
87 |
image = image_candidates[0]
|
88 |
with PILImage.open(image) as img:
|
89 |
+
img = img.resize((img.width // 6, img.height // 6))
|
90 |
+
img = img.convert("L")
|
91 |
with io.BytesIO() as output:
|
92 |
+
img.save(output, format="JPEG", quality=60)
|
93 |
compressed_image_data = output.getvalue()
|
94 |
|
|
|
95 |
inputs["image_data_1"] = base64.b64encode(compressed_image_data).decode('utf-8')
|
96 |
else:
|
97 |
inputs["image_data_1"] = ""
|
98 |
|
99 |
return inputs
|
100 |
|
101 |
+
# Main function to initialize and run the UI
|
102 |
def home():
|
103 |
+
# Set up the page layout
|
104 |
+
st.set_page_config(layout='wide', page_title="Virtual Tutor")
|
105 |
+
|
106 |
+
# Header
|
107 |
+
st.header("Welcome to Virtual Tutor - CHAT")
|
108 |
+
|
109 |
+
# SVG Banner for UI branding
|
110 |
st.markdown("""
|
111 |
<svg width="600" height="100">
|
112 |
<text x="50%" y="50%" font-family="San serif" font-size="42px" fill="Black" text-anchor="middle" stroke="white"
|
|
|
115 |
</svg>
|
116 |
""", unsafe_allow_html=True)
|
117 |
|
118 |
+
# Initialize the chat session if not already initialized
|
119 |
if "messages" not in st.session_state:
|
120 |
+
st.session_state.messages = [{"role": "assistant", "content": "Hi! How may I assist you today?"}]
|
|
|
|
|
121 |
|
122 |
+
# Styling for the chat input container
|
123 |
st.markdown("""
|
124 |
<style>
|
125 |
.stChatInputContainer > div {
|
|
|
128 |
</style>
|
129 |
""", unsafe_allow_html=True)
|
130 |
|
131 |
+
# Display previous chat messages
|
132 |
+
for message in st.session_state.messages:
|
133 |
with st.chat_message(message["role"]):
|
134 |
st.write(message["content"])
|
135 |
|
136 |
+
# Display chat messages from memory
|
137 |
for i, msg in enumerate(memory_storage.messages):
|
138 |
name = "user" if i % 2 == 0 else "assistant"
|
139 |
st.chat_message(name).markdown(msg.content)
|
140 |
|
141 |
+
# Handle user input and generate response
|
142 |
+
if user_input := st.chat_input("Enter your question here..."):
|
143 |
with st.chat_message("user"):
|
144 |
st.markdown(user_input)
|
145 |
|
146 |
with st.spinner("Generating Response..."):
|
147 |
with st.chat_message("assistant"):
|
148 |
response = get_answer(user_input)
|
149 |
+
answer = response
|
150 |
st.markdown(answer)
|
151 |
+
|
152 |
+
# Save user and assistant messages to session state
|
153 |
message = {"role": "assistant", "content": answer}
|
154 |
message_u = {"role": "user", "content": user_input}
|
155 |
st.session_state.messages.append(message_u)
|
156 |
st.session_state.messages.append(message)
|
157 |
+
|
158 |
+
# Process inputs for image/video
|
159 |
+
inputs = format_prompt_inputs(image_collection, video_collection, user_input)
|
160 |
+
|
161 |
+
# Display images
|
162 |
st.markdown("### Images")
|
163 |
+
display_images(image_collection, user_input, max_distance=1.55, debug=False)
|
164 |
+
|
165 |
+
# Display videos based on frames
|
166 |
st.markdown("### Videos")
|
167 |
frame = inputs["frame"]
|
168 |
if frame:
|
169 |
+
directory_name = frame.split('/')[1]
|
170 |
video_path = f"videos_flattened/{directory_name}.mp4"
|
171 |
if os.path.exists(video_path):
|
172 |
st.video(video_path)
|
173 |
else:
|
174 |
+
st.error("Video file not found.")
|
175 |
+
|
176 |
+
# Call the home function to run the app
|
177 |
+
if __name__ == "__main__":
|
178 |
+
home()
|