from utils.qa import chain import streamlit as st from langchain.memory import ConversationBufferWindowMemory from langchain_community.chat_message_histories import StreamlitChatMessageHistory path = "mm_vdb2" client = chromadb.PersistentClient(path=path) image_collection = client.get_collection(name="image") video_collection = client.get_collection(name='video_collection') memory_storage = StreamlitChatMessageHistory(key="chat_messages") memory = ConversationBufferWindowMemory(memory_key="chat_history", human_prefix="User", chat_memory=memory_storage, k=3) def get_answer(query): response = chain.invoke(query) #return response["result"] return response def home(): st.header("Welcome") #st.set_page_config(layout='wide', page_title="Virtual Tutor") st.markdown(""" Virtual Tutor - CHAT """, unsafe_allow_html=True) if "messages" not in st.session_state: st.session_state.messages = [ {"role": "assistant", "content": "Hi! How may I assist you today?"} ] st.markdown(""" """, unsafe_allow_html=True) for message in st.session_state.messages: # Display the prior chat messages with st.chat_message(message["role"]): st.write(message["content"]) for i, msg in enumerate(memory_storage.messages): name = "user" if i % 2 == 0 else "assistant" st.chat_message(name).markdown(msg.content) if user_input := st.chat_input("User Input"): with st.chat_message("user"): st.markdown(user_input) with st.spinner("Generating Response..."): with st.chat_message("assistant"): response = get_answer(user_input) answer = response['result'] st.markdown(answer) message = {"role": "assistant", "content": answer} message_u = {"role": "user", "content": user_input} st.session_state.messages.append(message_u) st.session_state.messages.append(message) display_images(user_input) display_videos_streamlit(user_input) def display_images(image_collection, query_text, max_distance=None, debug=False): """ Display images in a Streamlit app based on a query. Args: image_collection: The image collection object for querying. query_text (str): The text query for images. max_distance (float, optional): Maximum allowable distance for filtering. debug (bool, optional): Whether to print debug information. """ results = image_collection.query( query_texts=[query_text], n_results=10, include=['uris', 'distances'] ) uris = results['uris'][0] distances = results['distances'][0] # Combine uris and distances, then sort by URI in ascending order sorted_results = sorted(zip(uris, distances), key=lambda x: x[0]) # Display images side by side, 3 images per row cols = st.columns(3) # Create 3 columns for the layout for i, (uri, distance) in enumerate(sorted_results): if max_distance is None or distance <= max_distance: try: img = PILImage.open(uri) with cols[i % 3]: # Use modulo to cycle through columns st.image(img, use_container_width = True) except Exception as e: st.error(f"Error loading image: {e}") def display_videos_streamlit(video_collection, query_text, max_distance=None, max_results=5, debug=False): """ Display videos in a Streamlit app based on a query. Args: video_collection: The video collection object for querying. query_text (str): The text query for videos. max_distance (float, optional): Maximum allowable distance for filtering. max_results (int, optional): Maximum number of results to display. debug (bool, optional): Whether to print debug information. """ # Deduplication set displayed_videos = set() # Query the video collection with the specified text results = video_collection.query( query_texts=[query_text], n_results=max_results, # Adjust the number of results if needed include=['uris', 'distances', 'metadatas'] ) # Extract URIs, distances, and metadatas from the result uris = results['uris'][0] distances = results['distances'][0] metadatas = results['metadatas'][0] # Display the videos that meet the distance criteria for uri, distance, metadata in zip(uris, distances, metadatas): video_uri = metadata['video_uri'] # Check if a max_distance filter is applied and the distance is within the allowed range if (max_distance is None or distance <= max_distance) and video_uri not in displayed_videos: if debug: st.write(f"URI: {uri} - Video URI: {video_uri} - Distance: {distance}") st.video(video_uri) # Display video in Streamlit displayed_videos.add(video_uri) # Add to the set to prevent duplication else: if debug: st.write(f"URI: {uri} - Video URI: {video_uri} - Distance: {distance} (Filtered out)")