|
import os
|
|
import streamlit as st
|
|
from PIL import Image as PILImage
|
|
from PIL import Image as pilImage
|
|
import base64
|
|
import io
|
|
import chromadb
|
|
from initate import process_pdf
|
|
from utils.llm_ag import intiate_convo
|
|
from utils.doi import process_image_and_get_description
|
|
|
|
path = "mm_vdb2"
|
|
client = chromadb.PersistentClient(path=path)
|
|
import streamlit as st
|
|
from PIL import Image as PILImage
|
|
|
|
def display_images(image_collection, query_text, max_distance=None, debug=False):
|
|
"""
|
|
Display images in a Streamlit app based on a query.
|
|
|
|
Args:
|
|
image_collection: The image collection object for querying.
|
|
query_text (str): The text query for images.
|
|
max_distance (float, optional): Maximum allowable distance for filtering.
|
|
debug (bool, optional): Whether to print debug information.
|
|
"""
|
|
results = image_collection.query(
|
|
query_texts=[query_text],
|
|
n_results=10,
|
|
include=['uris', 'distances']
|
|
)
|
|
|
|
uris = results['uris'][0]
|
|
distances = results['distances'][0]
|
|
|
|
|
|
sorted_results = sorted(zip(uris, distances), key=lambda x: x[0])
|
|
|
|
|
|
for uri, distance in sorted_results:
|
|
if max_distance is None or distance <= max_distance:
|
|
if debug:
|
|
st.write(f"URI: {uri} - Distance: {distance}")
|
|
try:
|
|
img = PILImage.open(uri)
|
|
st.image(img, width=300)
|
|
except Exception as e:
|
|
st.error(f"Error loading image {uri}: {e}")
|
|
else:
|
|
if debug:
|
|
st.write(f"URI: {uri} - Distance: {distance} (Filtered out)")
|
|
|
|
|
|
|
|
def display_videos_streamlit(video_collection, query_text, max_distance=None, max_results=5, debug=False):
|
|
"""
|
|
Display videos in a Streamlit app based on a query.
|
|
|
|
Args:
|
|
video_collection: The video collection object for querying.
|
|
query_text (str): The text query for videos.
|
|
max_distance (float, optional): Maximum allowable distance for filtering.
|
|
max_results (int, optional): Maximum number of results to display.
|
|
debug (bool, optional): Whether to print debug information.
|
|
"""
|
|
|
|
displayed_videos = set()
|
|
|
|
|
|
results = video_collection.query(
|
|
query_texts=[query_text],
|
|
n_results=max_results,
|
|
include=['uris', 'distances', 'metadatas']
|
|
)
|
|
|
|
|
|
uris = results['uris'][0]
|
|
distances = results['distances'][0]
|
|
metadatas = results['metadatas'][0]
|
|
|
|
|
|
for uri, distance, metadata in zip(uris, distances, metadatas):
|
|
video_uri = metadata['video_uri']
|
|
|
|
|
|
if (max_distance is None or distance <= max_distance) and video_uri not in displayed_videos:
|
|
if debug:
|
|
st.write(f"URI: {uri} - Video URI: {video_uri} - Distance: {distance}")
|
|
st.video(video_uri)
|
|
displayed_videos.add(video_uri)
|
|
else:
|
|
if debug:
|
|
st.write(f"URI: {uri} - Video URI: {video_uri} - Distance: {distance} (Filtered out)")
|
|
|
|
|
|
def image_uris(image_collection,query_text, max_distance=None, max_results=5):
|
|
results = image_collection.query(
|
|
query_texts=[query_text],
|
|
n_results=max_results,
|
|
include=['uris', 'distances']
|
|
)
|
|
|
|
filtered_uris = []
|
|
for uri, distance in zip(results['uris'][0], results['distances'][0]):
|
|
if max_distance is None or distance <= max_distance:
|
|
filtered_uris.append(uri)
|
|
|
|
return filtered_uris
|
|
|
|
def text_uris(text_collection,query_text, max_distance=None, max_results=5):
|
|
results = text_collection.query(
|
|
query_texts=[query_text],
|
|
n_results=max_results,
|
|
include=['documents', 'distances']
|
|
)
|
|
|
|
filtered_texts = []
|
|
for doc, distance in zip(results['documents'][0], results['distances'][0]):
|
|
if max_distance is None or distance <= max_distance:
|
|
filtered_texts.append(doc)
|
|
|
|
return filtered_texts
|
|
|
|
def frame_uris(video_collection,query_text, max_distance=None, max_results=5):
|
|
results = video_collection.query(
|
|
query_texts=[query_text],
|
|
n_results=max_results,
|
|
include=['uris', 'distances']
|
|
)
|
|
|
|
filtered_uris = []
|
|
seen_folders = set()
|
|
|
|
for uri, distance in zip(results['uris'][0], results['distances'][0]):
|
|
if max_distance is None or distance <= max_distance:
|
|
folder = os.path.dirname(uri)
|
|
if folder not in seen_folders:
|
|
filtered_uris.append(uri)
|
|
seen_folders.add(folder)
|
|
|
|
if len(filtered_uris) == max_results:
|
|
break
|
|
|
|
return filtered_uris
|
|
|
|
def image_uris2(image_collection2,query_text, max_distance=None, max_results=5):
|
|
results = image_collection2.query(
|
|
query_texts=[query_text],
|
|
n_results=max_results,
|
|
include=['uris', 'distances']
|
|
)
|
|
|
|
filtered_uris = []
|
|
for uri, distance in zip(results['uris'][0], results['distances'][0]):
|
|
if max_distance is None or distance <= max_distance:
|
|
filtered_uris.append(uri)
|
|
|
|
return filtered_uris
|
|
|
|
|
|
def format_prompt_inputs(image_collection, text_collection, video_collection, user_query):
|
|
frame_candidates = frame_uris(video_collection, user_query, max_distance=1.55)
|
|
image_candidates = image_uris(image_collection, user_query, max_distance=1.5)
|
|
texts = text_uris(text_collection, user_query, max_distance=1.3)
|
|
|
|
inputs = {"query": user_query, "texts": texts}
|
|
frame = frame_candidates[0] if frame_candidates else ""
|
|
inputs["frame"] = frame
|
|
|
|
if image_candidates:
|
|
image = image_candidates[0]
|
|
with PILImage.open(image) as img:
|
|
img = img.resize((img.width // 6, img.height // 6))
|
|
img = img.convert("L")
|
|
with io.BytesIO() as output:
|
|
img.save(output, format="JPEG", quality=60)
|
|
compressed_image_data = output.getvalue()
|
|
|
|
inputs["image_data_1"] = base64.b64encode(compressed_image_data).decode('utf-8')
|
|
else:
|
|
inputs["image_data_1"] = ""
|
|
|
|
return inputs
|
|
|
|
def page_1():
|
|
st.title("Page 1: Upload and Process PDF")
|
|
|
|
uploaded_file = st.file_uploader("Upload a PDF file", type=["pdf"])
|
|
if uploaded_file:
|
|
pdf_path = f"/tmp/{uploaded_file.name}"
|
|
with open(pdf_path, "wb") as f:
|
|
f.write(uploaded_file.getbuffer())
|
|
|
|
try:
|
|
image_collection, text_collection, video_collection = process_pdf(pdf_path)
|
|
st.session_state.image_collection = image_collection
|
|
st.session_state.text_collection = text_collection
|
|
st.session_state.video_collection = video_collection
|
|
|
|
st.success("PDF processed successfully! Collections saved to session state.")
|
|
except Exception as e:
|
|
st.error(f"Error processing PDF: {e}")
|
|
|
|
def page_2():
|
|
st.title("Page 2: Query and Use Processed Collections")
|
|
|
|
if "image_collection" in st.session_state and "text_collection" in st.session_state and "video_collection" in st.session_state:
|
|
image_collection = st.session_state.image_collection
|
|
text_collection = st.session_state.text_collection
|
|
video_collection = st.session_state.video_collection
|
|
st.success("Collections loaded successfully.")
|
|
|
|
query = st.text_input("Enter your query", value="Example Query")
|
|
if query:
|
|
inputs = format_prompt_inputs(image_collection, text_collection, video_collection, query)
|
|
texts = inputs["texts"]
|
|
image_data_1 = inputs["image_data_1"]
|
|
|
|
if image_data_1:
|
|
image_data_1 = process_image_and_get_description(image_data_1)
|
|
|
|
response = intiate_convo(query, image_data_1, texts)
|
|
st.write("Response:", response)
|
|
|
|
st.markdown("### Images")
|
|
display_images(image_collection, query, max_distance=1.55, debug=True)
|
|
|
|
st.markdown("### Videos")
|
|
frame = inputs["frame"]
|
|
if frame:
|
|
video_path = f"StockVideos-CC0/{os.path.basename(frame).split('/')[0]}.mp4"
|
|
if os.path.exists(video_path):
|
|
st.video(video_path)
|
|
else:
|
|
st.write("No related videos found.")
|
|
else:
|
|
st.error("Collections not found in session state. Please process the PDF on Page 1.")
|
|
|
|
|
|
|
|
PAGES = {
|
|
"Upload and Process PDF": page_1,
|
|
"Query and Use Processed Collections": page_2
|
|
}
|
|
|
|
|
|
selected_page = st.sidebar.selectbox("Choose a page", options=list(PAGES.keys()))
|
|
|
|
|
|
PAGES[selected_page]() |