Update app.py
Browse files
app.py
CHANGED
@@ -1,250 +1,272 @@
|
|
1 |
-
import os
|
2 |
-
import streamlit as st
|
3 |
-
from PIL import Image as PILImage
|
4 |
-
from PIL import Image as pilImage
|
5 |
-
import base64
|
6 |
-
import io
|
7 |
-
import chromadb
|
8 |
-
from initate import process_pdf
|
9 |
-
from utils.llm_ag import intiate_convo
|
10 |
-
from utils.doi import process_image_and_get_description
|
11 |
-
|
12 |
-
path = "mm_vdb2"
|
13 |
-
client = chromadb.PersistentClient(path=path)
|
14 |
-
import streamlit as st
|
15 |
-
from PIL import Image as PILImage
|
16 |
-
|
17 |
-
def display_images(image_collection, query_text, max_distance=None, debug=False):
|
18 |
-
"""
|
19 |
-
Display images in a Streamlit app based on a query.
|
20 |
-
|
21 |
-
Args:
|
22 |
-
image_collection: The image collection object for querying.
|
23 |
-
query_text (str): The text query for images.
|
24 |
-
max_distance (float, optional): Maximum allowable distance for filtering.
|
25 |
-
debug (bool, optional): Whether to print debug information.
|
26 |
-
"""
|
27 |
-
results = image_collection.query(
|
28 |
-
query_texts=[query_text],
|
29 |
-
n_results=10,
|
30 |
-
include=['uris', 'distances']
|
31 |
-
)
|
32 |
-
|
33 |
-
uris = results['uris'][0]
|
34 |
-
distances = results['distances'][0]
|
35 |
-
|
36 |
-
# Combine uris and distances, then sort by URI in ascending order
|
37 |
-
sorted_results = sorted(zip(uris, distances), key=lambda x: x[0])
|
38 |
-
|
39 |
-
# Filter and display images
|
40 |
-
for uri, distance in sorted_results:
|
41 |
-
if max_distance is None or distance <= max_distance:
|
42 |
-
if debug:
|
43 |
-
st.write(f"URI: {uri} - Distance: {distance}")
|
44 |
-
try:
|
45 |
-
img = PILImage.open(uri)
|
46 |
-
st.image(img, width=300)
|
47 |
-
except Exception as e:
|
48 |
-
st.error(f"Error loading image {uri}: {e}")
|
49 |
-
else:
|
50 |
-
if debug:
|
51 |
-
st.write(f"URI: {uri} - Distance: {distance} (Filtered out)")
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
def display_videos_streamlit(video_collection, query_text, max_distance=None, max_results=5, debug=False):
|
56 |
-
"""
|
57 |
-
Display videos in a Streamlit app based on a query.
|
58 |
-
|
59 |
-
Args:
|
60 |
-
video_collection: The video collection object for querying.
|
61 |
-
query_text (str): The text query for videos.
|
62 |
-
max_distance (float, optional): Maximum allowable distance for filtering.
|
63 |
-
max_results (int, optional): Maximum number of results to display.
|
64 |
-
debug (bool, optional): Whether to print debug information.
|
65 |
-
"""
|
66 |
-
# Deduplication set
|
67 |
-
displayed_videos = set()
|
68 |
-
|
69 |
-
# Query the video collection with the specified text
|
70 |
-
results = video_collection.query(
|
71 |
-
query_texts=[query_text],
|
72 |
-
n_results=max_results, # Adjust the number of results if needed
|
73 |
-
include=['uris', 'distances', 'metadatas']
|
74 |
-
)
|
75 |
-
|
76 |
-
# Extract URIs, distances, and metadatas from the result
|
77 |
-
uris = results['uris'][0]
|
78 |
-
distances = results['distances'][0]
|
79 |
-
metadatas = results['metadatas'][0]
|
80 |
-
|
81 |
-
# Display the videos that meet the distance criteria
|
82 |
-
for uri, distance, metadata in zip(uris, distances, metadatas):
|
83 |
-
video_uri = metadata['video_uri']
|
84 |
-
|
85 |
-
# Check if a max_distance filter is applied and the distance is within the allowed range
|
86 |
-
if (max_distance is None or distance <= max_distance) and video_uri not in displayed_videos:
|
87 |
-
if debug:
|
88 |
-
st.write(f"URI: {uri} - Video URI: {video_uri} - Distance: {distance}")
|
89 |
-
st.video(video_uri) # Display video in Streamlit
|
90 |
-
displayed_videos.add(video_uri) # Add to the set to prevent duplication
|
91 |
-
else:
|
92 |
-
if debug:
|
93 |
-
st.write(f"URI: {uri} - Video URI: {video_uri} - Distance: {distance} (Filtered out)")
|
94 |
-
|
95 |
-
|
96 |
-
def image_uris(image_collection,query_text, max_distance=None, max_results=5):
|
97 |
-
results = image_collection.query(
|
98 |
-
query_texts=[query_text],
|
99 |
-
n_results=max_results,
|
100 |
-
include=['uris', 'distances']
|
101 |
-
)
|
102 |
-
|
103 |
-
filtered_uris = []
|
104 |
-
for uri, distance in zip(results['uris'][0], results['distances'][0]):
|
105 |
-
if max_distance is None or distance <= max_distance:
|
106 |
-
filtered_uris.append(uri)
|
107 |
-
|
108 |
-
return filtered_uris
|
109 |
-
|
110 |
-
def text_uris(text_collection,query_text, max_distance=None, max_results=5):
|
111 |
-
results = text_collection.query(
|
112 |
-
query_texts=[query_text],
|
113 |
-
n_results=max_results,
|
114 |
-
include=['documents', 'distances']
|
115 |
-
)
|
116 |
-
|
117 |
-
filtered_texts = []
|
118 |
-
for doc, distance in zip(results['documents'][0], results['distances'][0]):
|
119 |
-
if max_distance is None or distance <= max_distance:
|
120 |
-
filtered_texts.append(doc)
|
121 |
-
|
122 |
-
return filtered_texts
|
123 |
-
|
124 |
-
def frame_uris(video_collection,query_text, max_distance=None, max_results=5):
|
125 |
-
results = video_collection.query(
|
126 |
-
query_texts=[query_text],
|
127 |
-
n_results=max_results,
|
128 |
-
include=['uris', 'distances']
|
129 |
-
)
|
130 |
-
|
131 |
-
filtered_uris = []
|
132 |
-
seen_folders = set()
|
133 |
-
|
134 |
-
for uri, distance in zip(results['uris'][0], results['distances'][0]):
|
135 |
-
if max_distance is None or distance <= max_distance:
|
136 |
-
folder = os.path.dirname(uri)
|
137 |
-
if folder not in seen_folders:
|
138 |
-
filtered_uris.append(uri)
|
139 |
-
seen_folders.add(folder)
|
140 |
-
|
141 |
-
if len(filtered_uris) == max_results:
|
142 |
-
break
|
143 |
-
|
144 |
-
return filtered_uris
|
145 |
-
|
146 |
-
def image_uris2(image_collection2,query_text, max_distance=None, max_results=5):
|
147 |
-
results = image_collection2.query(
|
148 |
-
query_texts=[query_text],
|
149 |
-
n_results=max_results,
|
150 |
-
include=['uris', 'distances']
|
151 |
-
)
|
152 |
-
|
153 |
-
filtered_uris = []
|
154 |
-
for uri, distance in zip(results['uris'][0], results['distances'][0]):
|
155 |
-
if max_distance is None or distance <= max_distance:
|
156 |
-
filtered_uris.append(uri)
|
157 |
-
|
158 |
-
return filtered_uris
|
159 |
-
|
160 |
-
|
161 |
-
def format_prompt_inputs(image_collection, text_collection, video_collection, user_query):
|
162 |
-
frame_candidates = frame_uris(video_collection, user_query, max_distance=1.55)
|
163 |
-
image_candidates = image_uris(image_collection, user_query, max_distance=1.5)
|
164 |
-
texts = text_uris(text_collection, user_query, max_distance=1.3)
|
165 |
-
|
166 |
-
inputs = {"query": user_query, "texts": texts}
|
167 |
-
frame = frame_candidates[0] if frame_candidates else ""
|
168 |
-
inputs["frame"] = frame
|
169 |
-
|
170 |
-
if image_candidates:
|
171 |
-
image = image_candidates[0]
|
172 |
-
with PILImage.open(image) as img:
|
173 |
-
img = img.resize((img.width // 6, img.height // 6))
|
174 |
-
img = img.convert("L")
|
175 |
-
with io.BytesIO() as output:
|
176 |
-
img.save(output, format="JPEG", quality=60)
|
177 |
-
compressed_image_data = output.getvalue()
|
178 |
-
|
179 |
-
inputs["image_data_1"] = base64.b64encode(compressed_image_data).decode('utf-8')
|
180 |
-
else:
|
181 |
-
inputs["image_data_1"] = ""
|
182 |
-
|
183 |
-
return inputs
|
184 |
-
|
185 |
-
def page_1():
|
186 |
-
st.title("Page 1: Upload and Process PDF")
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
st.
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
250 |
PAGES[selected_page]()
|
|
|
1 |
+
import os
|
2 |
+
import streamlit as st
|
3 |
+
from PIL import Image as PILImage
|
4 |
+
from PIL import Image as pilImage
|
5 |
+
import base64
|
6 |
+
import io
|
7 |
+
import chromadb
|
8 |
+
from initate import process_pdf
|
9 |
+
from utils.llm_ag import intiate_convo
|
10 |
+
from utils.doi import process_image_and_get_description
|
11 |
+
|
12 |
+
path = "mm_vdb2"
|
13 |
+
client = chromadb.PersistentClient(path=path)
|
14 |
+
import streamlit as st
|
15 |
+
from PIL import Image as PILImage
|
16 |
+
|
17 |
+
def display_images(image_collection, query_text, max_distance=None, debug=False):
|
18 |
+
"""
|
19 |
+
Display images in a Streamlit app based on a query.
|
20 |
+
|
21 |
+
Args:
|
22 |
+
image_collection: The image collection object for querying.
|
23 |
+
query_text (str): The text query for images.
|
24 |
+
max_distance (float, optional): Maximum allowable distance for filtering.
|
25 |
+
debug (bool, optional): Whether to print debug information.
|
26 |
+
"""
|
27 |
+
results = image_collection.query(
|
28 |
+
query_texts=[query_text],
|
29 |
+
n_results=10,
|
30 |
+
include=['uris', 'distances']
|
31 |
+
)
|
32 |
+
|
33 |
+
uris = results['uris'][0]
|
34 |
+
distances = results['distances'][0]
|
35 |
+
|
36 |
+
# Combine uris and distances, then sort by URI in ascending order
|
37 |
+
sorted_results = sorted(zip(uris, distances), key=lambda x: x[0])
|
38 |
+
|
39 |
+
# Filter and display images
|
40 |
+
for uri, distance in sorted_results:
|
41 |
+
if max_distance is None or distance <= max_distance:
|
42 |
+
if debug:
|
43 |
+
st.write(f"URI: {uri} - Distance: {distance}")
|
44 |
+
try:
|
45 |
+
img = PILImage.open(uri)
|
46 |
+
st.image(img, width=300)
|
47 |
+
except Exception as e:
|
48 |
+
st.error(f"Error loading image {uri}: {e}")
|
49 |
+
else:
|
50 |
+
if debug:
|
51 |
+
st.write(f"URI: {uri} - Distance: {distance} (Filtered out)")
|
52 |
+
|
53 |
+
|
54 |
+
|
55 |
+
def display_videos_streamlit(video_collection, query_text, max_distance=None, max_results=5, debug=False):
|
56 |
+
"""
|
57 |
+
Display videos in a Streamlit app based on a query.
|
58 |
+
|
59 |
+
Args:
|
60 |
+
video_collection: The video collection object for querying.
|
61 |
+
query_text (str): The text query for videos.
|
62 |
+
max_distance (float, optional): Maximum allowable distance for filtering.
|
63 |
+
max_results (int, optional): Maximum number of results to display.
|
64 |
+
debug (bool, optional): Whether to print debug information.
|
65 |
+
"""
|
66 |
+
# Deduplication set
|
67 |
+
displayed_videos = set()
|
68 |
+
|
69 |
+
# Query the video collection with the specified text
|
70 |
+
results = video_collection.query(
|
71 |
+
query_texts=[query_text],
|
72 |
+
n_results=max_results, # Adjust the number of results if needed
|
73 |
+
include=['uris', 'distances', 'metadatas']
|
74 |
+
)
|
75 |
+
|
76 |
+
# Extract URIs, distances, and metadatas from the result
|
77 |
+
uris = results['uris'][0]
|
78 |
+
distances = results['distances'][0]
|
79 |
+
metadatas = results['metadatas'][0]
|
80 |
+
|
81 |
+
# Display the videos that meet the distance criteria
|
82 |
+
for uri, distance, metadata in zip(uris, distances, metadatas):
|
83 |
+
video_uri = metadata['video_uri']
|
84 |
+
|
85 |
+
# Check if a max_distance filter is applied and the distance is within the allowed range
|
86 |
+
if (max_distance is None or distance <= max_distance) and video_uri not in displayed_videos:
|
87 |
+
if debug:
|
88 |
+
st.write(f"URI: {uri} - Video URI: {video_uri} - Distance: {distance}")
|
89 |
+
st.video(video_uri) # Display video in Streamlit
|
90 |
+
displayed_videos.add(video_uri) # Add to the set to prevent duplication
|
91 |
+
else:
|
92 |
+
if debug:
|
93 |
+
st.write(f"URI: {uri} - Video URI: {video_uri} - Distance: {distance} (Filtered out)")
|
94 |
+
|
95 |
+
|
96 |
+
def image_uris(image_collection,query_text, max_distance=None, max_results=5):
|
97 |
+
results = image_collection.query(
|
98 |
+
query_texts=[query_text],
|
99 |
+
n_results=max_results,
|
100 |
+
include=['uris', 'distances']
|
101 |
+
)
|
102 |
+
|
103 |
+
filtered_uris = []
|
104 |
+
for uri, distance in zip(results['uris'][0], results['distances'][0]):
|
105 |
+
if max_distance is None or distance <= max_distance:
|
106 |
+
filtered_uris.append(uri)
|
107 |
+
|
108 |
+
return filtered_uris
|
109 |
+
|
110 |
+
def text_uris(text_collection,query_text, max_distance=None, max_results=5):
|
111 |
+
results = text_collection.query(
|
112 |
+
query_texts=[query_text],
|
113 |
+
n_results=max_results,
|
114 |
+
include=['documents', 'distances']
|
115 |
+
)
|
116 |
+
|
117 |
+
filtered_texts = []
|
118 |
+
for doc, distance in zip(results['documents'][0], results['distances'][0]):
|
119 |
+
if max_distance is None or distance <= max_distance:
|
120 |
+
filtered_texts.append(doc)
|
121 |
+
|
122 |
+
return filtered_texts
|
123 |
+
|
124 |
+
def frame_uris(video_collection,query_text, max_distance=None, max_results=5):
|
125 |
+
results = video_collection.query(
|
126 |
+
query_texts=[query_text],
|
127 |
+
n_results=max_results,
|
128 |
+
include=['uris', 'distances']
|
129 |
+
)
|
130 |
+
|
131 |
+
filtered_uris = []
|
132 |
+
seen_folders = set()
|
133 |
+
|
134 |
+
for uri, distance in zip(results['uris'][0], results['distances'][0]):
|
135 |
+
if max_distance is None or distance <= max_distance:
|
136 |
+
folder = os.path.dirname(uri)
|
137 |
+
if folder not in seen_folders:
|
138 |
+
filtered_uris.append(uri)
|
139 |
+
seen_folders.add(folder)
|
140 |
+
|
141 |
+
if len(filtered_uris) == max_results:
|
142 |
+
break
|
143 |
+
|
144 |
+
return filtered_uris
|
145 |
+
|
146 |
+
def image_uris2(image_collection2,query_text, max_distance=None, max_results=5):
|
147 |
+
results = image_collection2.query(
|
148 |
+
query_texts=[query_text],
|
149 |
+
n_results=max_results,
|
150 |
+
include=['uris', 'distances']
|
151 |
+
)
|
152 |
+
|
153 |
+
filtered_uris = []
|
154 |
+
for uri, distance in zip(results['uris'][0], results['distances'][0]):
|
155 |
+
if max_distance is None or distance <= max_distance:
|
156 |
+
filtered_uris.append(uri)
|
157 |
+
|
158 |
+
return filtered_uris
|
159 |
+
|
160 |
+
|
161 |
+
def format_prompt_inputs(image_collection, text_collection, video_collection, user_query):
|
162 |
+
frame_candidates = frame_uris(video_collection, user_query, max_distance=1.55)
|
163 |
+
image_candidates = image_uris(image_collection, user_query, max_distance=1.5)
|
164 |
+
texts = text_uris(text_collection, user_query, max_distance=1.3)
|
165 |
+
|
166 |
+
inputs = {"query": user_query, "texts": texts}
|
167 |
+
frame = frame_candidates[0] if frame_candidates else ""
|
168 |
+
inputs["frame"] = frame
|
169 |
+
|
170 |
+
if image_candidates:
|
171 |
+
image = image_candidates[0]
|
172 |
+
with PILImage.open(image) as img:
|
173 |
+
img = img.resize((img.width // 6, img.height // 6))
|
174 |
+
img = img.convert("L")
|
175 |
+
with io.BytesIO() as output:
|
176 |
+
img.save(output, format="JPEG", quality=60)
|
177 |
+
compressed_image_data = output.getvalue()
|
178 |
+
|
179 |
+
inputs["image_data_1"] = base64.b64encode(compressed_image_data).decode('utf-8')
|
180 |
+
else:
|
181 |
+
inputs["image_data_1"] = ""
|
182 |
+
|
183 |
+
return inputs
|
184 |
+
|
185 |
+
def page_1():
|
186 |
+
st.title("Page 1: Upload and Process PDF")
|
187 |
+
|
188 |
+
# File uploader for PDF
|
189 |
+
uploaded_file = st.file_uploader("Upload a PDF file", type=["pdf"])
|
190 |
+
|
191 |
+
# Button to trigger processing
|
192 |
+
if uploaded_file and st.button("Process PDF"):
|
193 |
+
pdf_path = f"/tmp/{uploaded_file.name}"
|
194 |
+
with open(pdf_path, "wb") as f:
|
195 |
+
f.write(uploaded_file.getbuffer())
|
196 |
+
|
197 |
+
# Progress bar
|
198 |
+
progress_bar = st.progress(0)
|
199 |
+
status_text = st.empty()
|
200 |
+
|
201 |
+
try:
|
202 |
+
progress_bar.progress(10)
|
203 |
+
status_text.text("Initializing processing...")
|
204 |
+
|
205 |
+
# Simulating progress during processing
|
206 |
+
for progress in range(10, 100, 30):
|
207 |
+
st.time.sleep(0.5) # Simulate processing delay
|
208 |
+
progress_bar.progress(progress)
|
209 |
+
status_text.text(f"Processing... {progress}%")
|
210 |
+
|
211 |
+
# Process the PDF and save collections to session state
|
212 |
+
image_collection, text_collection, video_collection = process_pdf(pdf_path)
|
213 |
+
st.session_state.image_collection = image_collection
|
214 |
+
st.session_state.text_collection = text_collection
|
215 |
+
st.session_state.video_collection = video_collection
|
216 |
+
|
217 |
+
progress_bar.progress(100)
|
218 |
+
status_text.text("Processing completed successfully!")
|
219 |
+
st.success("PDF processed successfully! Collections saved to session state.")
|
220 |
+
except Exception as e:
|
221 |
+
progress_bar.progress(0)
|
222 |
+
status_text.text("")
|
223 |
+
st.error(f"Error processing PDF: {e}")
|
224 |
+
|
225 |
+
|
226 |
+
def page_2():
|
227 |
+
st.title("Page 2: Query and Use Processed Collections")
|
228 |
+
|
229 |
+
if "image_collection" in st.session_state and "text_collection" in st.session_state and "video_collection" in st.session_state:
|
230 |
+
image_collection = st.session_state.image_collection
|
231 |
+
text_collection = st.session_state.text_collection
|
232 |
+
video_collection = st.session_state.video_collection
|
233 |
+
st.success("Collections loaded successfully.")
|
234 |
+
|
235 |
+
query = st.text_input("Enter your query", value="Example Query")
|
236 |
+
if query:
|
237 |
+
inputs = format_prompt_inputs(image_collection, text_collection, video_collection, query)
|
238 |
+
texts = inputs["texts"]
|
239 |
+
image_data_1 = inputs["image_data_1"]
|
240 |
+
|
241 |
+
if image_data_1:
|
242 |
+
image_data_1 = process_image_and_get_description(image_data_1)
|
243 |
+
|
244 |
+
response = intiate_convo(query, image_data_1, texts)
|
245 |
+
st.write("Response:", response)
|
246 |
+
|
247 |
+
st.markdown("### Images")
|
248 |
+
display_images(image_collection, query, max_distance=1.55, debug=True)
|
249 |
+
|
250 |
+
st.markdown("### Videos")
|
251 |
+
frame = inputs["frame"]
|
252 |
+
if frame:
|
253 |
+
video_path = f"StockVideos-CC0/{os.path.basename(frame).split('/')[0]}.mp4"
|
254 |
+
if os.path.exists(video_path):
|
255 |
+
st.video(video_path)
|
256 |
+
else:
|
257 |
+
st.write("No related videos found.")
|
258 |
+
else:
|
259 |
+
st.error("Collections not found in session state. Please process the PDF on Page 1.")
|
260 |
+
|
261 |
+
# --- Navigation ---
|
262 |
+
|
263 |
+
PAGES = {
|
264 |
+
"Upload and Process PDF": page_1,
|
265 |
+
"Query and Use Processed Collections": page_2
|
266 |
+
}
|
267 |
+
|
268 |
+
# Select page
|
269 |
+
selected_page = st.sidebar.selectbox("Choose a page", options=list(PAGES.keys()))
|
270 |
+
|
271 |
+
# Render selected page
|
272 |
PAGES[selected_page]()
|