docling_rag / utils /ingestion.py
NEXAS's picture
Update utils/ingestion.py
7a013c2 verified
raw
history blame
4.97 kB
import json
import time
import os
from pathlib import Path
from typing import Dict, Any, List
from docling.backend.pypdfium2_backend import PyPdfiumDocumentBackend
from docling.datamodel.base_models import InputFormat
from docling.datamodel.pipeline_options import (
AcceleratorDevice,
AcceleratorOptions,
PdfPipelineOptions,
TableFormerMode
)
from docling.document_converter import DocumentConverter, PdfFormatOption
from docling_core.transforms.chunker.hybrid_chunker import HybridChunker
from langchain_community.embeddings.fastembed import FastEmbedEmbeddings
import chromadb
class DocumentProcessor:
def __init__(self):
"""Initialize document processor with necessary components"""
self.setup_document_converter()
self.embed_model = FastEmbedEmbeddings()
self.client = chromadb.PersistentClient(path="chroma_db") # Persistent Storage
def setup_document_converter(self):
"""Configure document converter with advanced processing capabilities"""
pipeline_options = PdfPipelineOptions()
pipeline_options.do_ocr = True
pipeline_options.do_table_structure = True
pipeline_options.table_structure_options.do_cell_matching = True
pipeline_options.ocr_options.lang = ["en"]
pipeline_options.table_structure_options.mode = TableFormerMode.ACCURATE
# βœ… Automatically handle CPU fallback
try:
pipeline_options.accelerator_options = AcceleratorOptions(
num_threads=8, device=AcceleratorDevice.MPS
)
except Exception as e:
print("⚠️ MPS is not available. Falling back to CPU.")
pipeline_options.accelerator_options = AcceleratorOptions(
num_threads=8, device=AcceleratorDevice.CPU
)
self.converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(
pipeline_options=pipeline_options,
backend=PyPdfiumDocumentBackend
)
}
)
def extract_chunk_metadata(self, chunk) -> Dict[str, Any]:
"""Extract essential metadata from a chunk"""
metadata = {
"text": chunk.text.strip(),
"headings": [],
"page_info": None,
"content_type": None
}
if hasattr(chunk, 'meta'):
if hasattr(chunk.meta, 'headings') and chunk.meta.headings:
metadata["headings"] = chunk.meta.headings
if hasattr(chunk.meta, 'doc_items'):
for item in chunk.meta.doc_items:
if hasattr(item, 'label'):
metadata["content_type"] = str(item.label)
if hasattr(item, 'prov') and item.prov:
for prov in item.prov:
if hasattr(prov, 'page_no'):
metadata["page_info"] = prov.page_no
return metadata
def process_document(self, pdf_path: str):
"""Process document and create searchable index with metadata"""
print(f"πŸ“„ Processing document: {pdf_path}")
start_time = time.time()
result = self.converter.convert(pdf_path)
doc = result.document
chunker = HybridChunker(tokenizer="jinaai/jina-embeddings-v3")
chunks = list(chunker.chunk(doc))
processed_chunks = []
for chunk in chunks:
metadata = self.extract_chunk_metadata(chunk)
processed_chunks.append(metadata)
print("βœ… Chunking completed. Creating vector database...")
collection = self.client.get_or_create_collection(name="document_chunks")
documents = []
embeddings = []
metadata_list = []
ids = []
for idx, chunk in enumerate(processed_chunks):
text = chunk.get('text', '').strip()
if not text:
print(f"⚠️ Skipping empty chunk at index {idx}")
continue # Skip empty chunks
embedding = self.embed_model.embed_documents([text])[0] # βœ… Corrected method
documents.append(text)
embeddings.append(embedding)
metadata_list.append({
"headings": json.dumps(chunk.get('headings', [])),
"page": chunk.get('page_info', None),
"content_type": chunk.get('content_type', None)
})
ids.append(str(idx))
if documents:
collection.add(
ids=ids,
embeddings=embeddings,
documents=documents,
metadatas=metadata_list
)
print(f"βœ… Successfully added {len(documents)} chunks to the database.")
processing_time = time.time() - start_time
print(f"βœ… Document processing completed in {processing_time:.2f} seconds")
return collection