Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,14 +1,37 @@
|
|
1 |
import streamlit as st
|
2 |
import os
|
3 |
import json
|
|
|
|
|
|
|
4 |
from utils.ingestion import DocumentProcessor
|
5 |
from utils.llm import LLMProcessor
|
6 |
from utils.qa import QAEngine
|
7 |
|
|
|
8 |
st.set_page_config(page_title="AI-Powered Document QA", layout="wide")
|
9 |
-
st.title("π AI-Powered Document QA")
|
10 |
|
11 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
document_processor = DocumentProcessor()
|
13 |
llm_processor = LLMProcessor()
|
14 |
qa_engine = QAEngine()
|
@@ -17,49 +40,59 @@ qa_engine = QAEngine()
|
|
17 |
os.makedirs("temp", exist_ok=True)
|
18 |
|
19 |
# Sidebar for file upload
|
20 |
-
st.sidebar.header("
|
21 |
uploaded_file = st.sidebar.file_uploader("Choose a PDF file", type=["pdf"])
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
# Document upload & processing
|
24 |
-
if uploaded_file:
|
25 |
pdf_path = os.path.join("temp", uploaded_file.name)
|
26 |
-
|
27 |
with open(pdf_path, "wb") as f:
|
28 |
f.write(uploaded_file.read())
|
29 |
|
30 |
-
st.sidebar.success("
|
31 |
|
32 |
-
with st.spinner("
|
33 |
document_processor.process_document(pdf_path)
|
34 |
|
35 |
-
st.sidebar.success("
|
36 |
st.session_state["document_uploaded"] = True
|
37 |
-
else:
|
38 |
-
st.session_state["document_uploaded"] = False
|
39 |
|
40 |
-
#
|
|
|
41 |
st.markdown("---")
|
42 |
|
43 |
-
#
|
44 |
-
|
|
|
|
|
|
|
45 |
|
46 |
-
|
|
|
47 |
|
48 |
-
if
|
49 |
-
|
50 |
-
|
51 |
-
if st.session_state["document_uploaded"]:
|
52 |
-
# Use document-based QA if a file is uploaded
|
53 |
-
answer = qa_engine.query(question)
|
54 |
-
else:
|
55 |
-
# Use AI-based response if no document is uploaded
|
56 |
-
answer = llm_processor.generate_answer("", question)
|
57 |
-
st.warning("β οΈ No document uploaded. This response is generated from general AI knowledge and may not be document-specific.")
|
58 |
|
59 |
-
|
60 |
-
st.
|
61 |
-
else:
|
62 |
-
st.warning("β οΈ Please enter a question.")
|
63 |
|
64 |
-
st.
|
65 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import os
|
3 |
import json
|
4 |
+
import base64
|
5 |
+
from langchain.memory import ConversationBufferWindowMemory
|
6 |
+
from langchain_community.chat_message_histories import StreamlitChatMessageHistory
|
7 |
from utils.ingestion import DocumentProcessor
|
8 |
from utils.llm import LLMProcessor
|
9 |
from utils.qa import QAEngine
|
10 |
|
11 |
+
# Configure Streamlit page
|
12 |
st.set_page_config(page_title="AI-Powered Document QA", layout="wide")
|
|
|
13 |
|
14 |
+
# Background Image
|
15 |
+
def add_bg_from_local(image_file):
|
16 |
+
with open(image_file, "rb") as image_file:
|
17 |
+
encoded_string = base64.b64encode(image_file.read())
|
18 |
+
st.markdown(
|
19 |
+
f"""
|
20 |
+
<style>
|
21 |
+
.stApp {{
|
22 |
+
background-image: url(data:image/png;base64,{encoded_string.decode()});
|
23 |
+
background-size: cover;
|
24 |
+
}}
|
25 |
+
</style>
|
26 |
+
""",
|
27 |
+
unsafe_allow_html=True,
|
28 |
+
)
|
29 |
+
|
30 |
+
# Path to background image
|
31 |
+
image_bg = "./image/background.jpeg" # Change this path accordingly
|
32 |
+
add_bg_from_local(image_bg)
|
33 |
+
|
34 |
+
# Initialize document processing & AI components
|
35 |
document_processor = DocumentProcessor()
|
36 |
llm_processor = LLMProcessor()
|
37 |
qa_engine = QAEngine()
|
|
|
40 |
os.makedirs("temp", exist_ok=True)
|
41 |
|
42 |
# Sidebar for file upload
|
43 |
+
st.sidebar.header("Upload a PDF")
|
44 |
uploaded_file = st.sidebar.file_uploader("Choose a PDF file", type=["pdf"])
|
45 |
|
46 |
+
# Initialize chat memory
|
47 |
+
memory_storage = StreamlitChatMessageHistory(key="chat_messages")
|
48 |
+
memory = ConversationBufferWindowMemory(
|
49 |
+
memory_key="chat_history", human_prefix="User", chat_memory=memory_storage, k=5
|
50 |
+
)
|
51 |
+
|
52 |
# Document upload & processing
|
53 |
+
if uploaded_file and "document_uploaded" not in st.session_state:
|
54 |
pdf_path = os.path.join("temp", uploaded_file.name)
|
55 |
+
|
56 |
with open(pdf_path, "wb") as f:
|
57 |
f.write(uploaded_file.read())
|
58 |
|
59 |
+
st.sidebar.success("File uploaded successfully!")
|
60 |
|
61 |
+
with st.spinner("Processing document..."):
|
62 |
document_processor.process_document(pdf_path)
|
63 |
|
64 |
+
st.sidebar.success("Document processed successfully!")
|
65 |
st.session_state["document_uploaded"] = True
|
|
|
|
|
66 |
|
67 |
+
# Chat interface layout
|
68 |
+
st.markdown("<h2 style='text-align: center;'>AI Chat Assistant</h2>", unsafe_allow_html=True)
|
69 |
st.markdown("---")
|
70 |
|
71 |
+
# Display chat history
|
72 |
+
for message in memory_storage.messages:
|
73 |
+
role = "user" if message.type == "human" else "assistant"
|
74 |
+
with st.chat_message(role):
|
75 |
+
st.markdown(message.content)
|
76 |
|
77 |
+
# User input at the bottom
|
78 |
+
user_input = st.chat_input("Ask me anything...")
|
79 |
|
80 |
+
if user_input:
|
81 |
+
# Store user message in memory
|
82 |
+
memory_storage.add_user_message(user_input)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
+
with st.chat_message("user"):
|
85 |
+
st.markdown(user_input)
|
|
|
|
|
86 |
|
87 |
+
with st.spinner("Generating response..."):
|
88 |
+
if st.session_state.get("document_uploaded", False):
|
89 |
+
answer = qa_engine.query(user_input)
|
90 |
+
else:
|
91 |
+
answer = llm_processor.generate_answer("", user_input)
|
92 |
+
st.warning("No document uploaded. This response is generated from general AI knowledge and may not be document-specific.")
|
93 |
+
|
94 |
+
# Store AI response in memory
|
95 |
+
memory_storage.add_ai_message(answer)
|
96 |
+
|
97 |
+
with st.chat_message("assistant"):
|
98 |
+
st.markdown(answer)
|