Spaces:
Running
Running
Update utils/qa.py
Browse files- utils/qa.py +58 -58
utils/qa.py
CHANGED
@@ -1,58 +1,58 @@
|
|
1 |
-
import logging
|
2 |
-
from ingestion import DocumentProcessor
|
3 |
-
from llm import LLMProcessor
|
4 |
-
|
5 |
-
|
6 |
-
class QAEngine:
|
7 |
-
def __init__(self):
|
8 |
-
self.processor = DocumentProcessor()
|
9 |
-
self.llm_processor = LLMProcessor()
|
10 |
-
|
11 |
-
def query(self, question: str, k: int = 5) -> str:
|
12 |
-
"""Query the document using semantic search and generate an answer"""
|
13 |
-
query_embedding = self.llm_processor.embed_model.encode(question)
|
14 |
-
|
15 |
-
# Corrected ChromaDB query syntax
|
16 |
-
results = self.processor.index.query(
|
17 |
-
query_embeddings=[query_embedding],
|
18 |
-
n_results=k
|
19 |
-
)
|
20 |
-
|
21 |
-
# Extracting results properly
|
22 |
-
chunks = []
|
23 |
-
for i in range(len(results["documents"][0])): # Iterate over top-k results
|
24 |
-
chunks.append({
|
25 |
-
"text": results["documents"][0][i],
|
26 |
-
"headings": results["metadatas"][0][i].get("headings", "[]"),
|
27 |
-
"page": results["metadatas"][0][i].get("page"),
|
28 |
-
"content_type": results["metadatas"][0][i].get("content_type")
|
29 |
-
})
|
30 |
-
|
31 |
-
print(f"\nRelevant chunks for query: '{question}'")
|
32 |
-
print("=" * 80)
|
33 |
-
|
34 |
-
context = self.llm_processor.format_context(chunks)
|
35 |
-
print(context)
|
36 |
-
|
37 |
-
return self.llm_processor.generate_answer(context, question)
|
38 |
-
|
39 |
-
|
40 |
-
# def main():
|
41 |
-
# logging.basicConfig(level=logging.INFO)
|
42 |
-
|
43 |
-
# processor = DocumentProcessor()
|
44 |
-
|
45 |
-
# pdf_path = "sample/InternLM.pdf"
|
46 |
-
# processor.process_document(pdf_path)
|
47 |
-
|
48 |
-
# qa_engine = QAEngine()
|
49 |
-
# question = "What are the main features of InternLM-XComposer-2.5?"
|
50 |
-
# answer = qa_engine.query(question)
|
51 |
-
|
52 |
-
# print("\nAnswer:")
|
53 |
-
# print("=" * 80)
|
54 |
-
# print(answer)
|
55 |
-
|
56 |
-
|
57 |
-
# if __name__ == "__main__":
|
58 |
-
# main()
|
|
|
1 |
+
import logging
|
2 |
+
from ingestion import DocumentProcessor
|
3 |
+
from llm import LLMProcessor
|
4 |
+
|
5 |
+
|
6 |
+
class QAEngine:
|
7 |
+
def __init__(self):
|
8 |
+
self.processor = DocumentProcessor()
|
9 |
+
self.llm_processor = LLMProcessor()
|
10 |
+
|
11 |
+
def query(self, question: str, k: int = 5) -> str:
|
12 |
+
"""Query the document using semantic search and generate an answer"""
|
13 |
+
query_embedding = self.llm_processor.embed_model.encode(question)
|
14 |
+
|
15 |
+
# Corrected ChromaDB query syntax
|
16 |
+
results = self.processor.index.query(
|
17 |
+
query_embeddings=[query_embedding],
|
18 |
+
n_results=k
|
19 |
+
)
|
20 |
+
|
21 |
+
# Extracting results properly
|
22 |
+
chunks = []
|
23 |
+
for i in range(len(results["documents"][0])): # Iterate over top-k results
|
24 |
+
chunks.append({
|
25 |
+
"text": results["documents"][0][i],
|
26 |
+
"headings": results["metadatas"][0][i].get("headings", "[]"),
|
27 |
+
"page": results["metadatas"][0][i].get("page"),
|
28 |
+
"content_type": results["metadatas"][0][i].get("content_type")
|
29 |
+
})
|
30 |
+
|
31 |
+
print(f"\nRelevant chunks for query: '{question}'")
|
32 |
+
print("=" * 80)
|
33 |
+
|
34 |
+
context = self.llm_processor.format_context(chunks)
|
35 |
+
print(context)
|
36 |
+
|
37 |
+
return self.llm_processor.generate_answer(context, question)
|
38 |
+
|
39 |
+
|
40 |
+
# def main():
|
41 |
+
# logging.basicConfig(level=logging.INFO)
|
42 |
+
|
43 |
+
# processor = DocumentProcessor()
|
44 |
+
|
45 |
+
# pdf_path = "sample/InternLM.pdf"
|
46 |
+
# processor.process_document(pdf_path)
|
47 |
+
|
48 |
+
# qa_engine = QAEngine()
|
49 |
+
# question = "What are the main features of InternLM-XComposer-2.5?"
|
50 |
+
# answer = qa_engine.query(question)
|
51 |
+
|
52 |
+
# print("\nAnswer:")
|
53 |
+
# print("=" * 80)
|
54 |
+
# print(answer)
|
55 |
+
|
56 |
+
|
57 |
+
# if __name__ == "__main__":
|
58 |
+
# main()
|