Spaces:
Running
Running
Upload 4 files
Browse files- app.py +53 -0
- utils/ingestion.py +119 -0
- utils/llm.py +49 -0
- utils/qa.py +58 -0
app.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
import json
|
4 |
+
from ingestion import DocumentProcessor
|
5 |
+
from llm import LLMProcessor
|
6 |
+
from qa_engine import QAEngine
|
7 |
+
|
8 |
+
# Set up Streamlit page
|
9 |
+
st.set_page_config(page_title="AI-Powered Document QA", layout="wide")
|
10 |
+
st.title("📄 AI-Powered Document QA")
|
11 |
+
|
12 |
+
# Initialize processors
|
13 |
+
document_processor = DocumentProcessor()
|
14 |
+
llm_processor = LLMProcessor()
|
15 |
+
qa_engine = QAEngine()
|
16 |
+
|
17 |
+
# File uploader
|
18 |
+
st.sidebar.header("Upload a PDF")
|
19 |
+
uploaded_file = st.sidebar.file_uploader("Choose a PDF file", type=["pdf"])
|
20 |
+
|
21 |
+
if uploaded_file:
|
22 |
+
# Save file to a temporary path
|
23 |
+
pdf_path = f"temp/{uploaded_file.name}"
|
24 |
+
os.makedirs("temp", exist_ok=True)
|
25 |
+
|
26 |
+
with open(pdf_path, "wb") as f:
|
27 |
+
f.write(uploaded_file.read())
|
28 |
+
|
29 |
+
st.sidebar.success("✅ File uploaded successfully!")
|
30 |
+
|
31 |
+
# Process the document
|
32 |
+
with st.spinner("🔄 Processing document..."):
|
33 |
+
document_processor.process_document(pdf_path)
|
34 |
+
|
35 |
+
st.sidebar.success("✅ Document processed successfully!")
|
36 |
+
|
37 |
+
# Query input
|
38 |
+
question = st.text_input("Ask a question from the document:", placeholder="What are the key insights?")
|
39 |
+
|
40 |
+
if st.button("🔍 Search & Answer"):
|
41 |
+
if question:
|
42 |
+
with st.spinner("🧠 Searching for relevant context..."):
|
43 |
+
answer = qa_engine.query(question)
|
44 |
+
|
45 |
+
st.subheader("📝 Answer:")
|
46 |
+
st.write(answer)
|
47 |
+
|
48 |
+
else:
|
49 |
+
st.warning("⚠️ Please enter a question.")
|
50 |
+
|
51 |
+
# Footer
|
52 |
+
st.markdown("---")
|
53 |
+
st.caption("🤖 Powered by ChromaDB + Groq LLM | Built with ❤️ using Streamlit")
|
utils/ingestion.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import time
|
3 |
+
import os
|
4 |
+
from pathlib import Path
|
5 |
+
from typing import Dict, Any, List
|
6 |
+
from tempfile import mkdtemp
|
7 |
+
|
8 |
+
from docling.backend.pypdfium2_backend import PyPdfiumDocumentBackend
|
9 |
+
from docling.datamodel.base_models import InputFormat
|
10 |
+
from docling.datamodel.pipeline_options import (
|
11 |
+
AcceleratorDevice,
|
12 |
+
AcceleratorOptions,
|
13 |
+
PdfPipelineOptions,
|
14 |
+
TableFormerMode
|
15 |
+
)
|
16 |
+
from docling.document_converter import DocumentConverter, PdfFormatOption
|
17 |
+
from docling_core.transforms.chunker.hybrid_chunker import HybridChunker
|
18 |
+
from langchain_community.embeddings.fastembed import FastEmbedEmbeddings
|
19 |
+
import chromadb
|
20 |
+
|
21 |
+
|
22 |
+
class DocumentProcessor:
|
23 |
+
def __init__(self):
|
24 |
+
"""Initialize document processor with necessary components"""
|
25 |
+
self.setup_document_converter()
|
26 |
+
self.embed_model = FastEmbedEmbeddings()
|
27 |
+
self.client = chromadb.PersistentClient(path=mkdtemp()) # Persistent storage
|
28 |
+
|
29 |
+
def setup_document_converter(self):
|
30 |
+
"""Configure document converter with advanced processing capabilities"""
|
31 |
+
pipeline_options = PdfPipelineOptions()
|
32 |
+
pipeline_options.do_ocr = True
|
33 |
+
pipeline_options.do_table_structure = True
|
34 |
+
pipeline_options.table_structure_options.do_cell_matching = True
|
35 |
+
pipeline_options.ocr_options.lang = ["en"]
|
36 |
+
pipeline_options.table_structure_options.mode = TableFormerMode.ACCURATE
|
37 |
+
pipeline_options.accelerator_options = AcceleratorOptions(
|
38 |
+
num_threads=8, device=AcceleratorDevice.MPS
|
39 |
+
)
|
40 |
+
|
41 |
+
self.converter = DocumentConverter(
|
42 |
+
format_options={
|
43 |
+
InputFormat.PDF: PdfFormatOption(
|
44 |
+
pipeline_options=pipeline_options,
|
45 |
+
backend=PyPdfiumDocumentBackend
|
46 |
+
)
|
47 |
+
}
|
48 |
+
)
|
49 |
+
|
50 |
+
def extract_chunk_metadata(self, chunk) -> Dict[str, Any]:
|
51 |
+
"""Extract essential metadata from a chunk"""
|
52 |
+
metadata = {
|
53 |
+
"text": chunk.text,
|
54 |
+
"headings": [],
|
55 |
+
"page_info": None,
|
56 |
+
"content_type": None
|
57 |
+
}
|
58 |
+
|
59 |
+
if hasattr(chunk, 'meta'):
|
60 |
+
if hasattr(chunk.meta, 'headings') and chunk.meta.headings:
|
61 |
+
metadata["headings"] = chunk.meta.headings
|
62 |
+
|
63 |
+
if hasattr(chunk.meta, 'doc_items'):
|
64 |
+
for item in chunk.meta.doc_items:
|
65 |
+
if hasattr(item, 'label'):
|
66 |
+
metadata["content_type"] = str(item.label)
|
67 |
+
|
68 |
+
if hasattr(item, 'prov') and item.prov:
|
69 |
+
for prov in item.prov:
|
70 |
+
if hasattr(prov, 'page_no'):
|
71 |
+
metadata["page_info"] = prov.page_no
|
72 |
+
|
73 |
+
return metadata
|
74 |
+
|
75 |
+
def process_document(self, pdf_path: str) -> Any:
|
76 |
+
"""Process document and create searchable index with metadata"""
|
77 |
+
print(f"Processing document: {pdf_path}")
|
78 |
+
start_time = time.time()
|
79 |
+
|
80 |
+
result = self.converter.convert(pdf_path)
|
81 |
+
doc = result.document
|
82 |
+
|
83 |
+
chunker = HybridChunker(tokenizer="jinaai/jina-embeddings-v3")
|
84 |
+
chunks = list(chunker.chunk(doc))
|
85 |
+
|
86 |
+
processed_chunks = []
|
87 |
+
for chunk in chunks:
|
88 |
+
metadata = self.extract_chunk_metadata(chunk)
|
89 |
+
processed_chunks.append(metadata)
|
90 |
+
|
91 |
+
print("\nCreating vector database...")
|
92 |
+
collection = self.client.get_or_create_collection(name="document_chunks")
|
93 |
+
|
94 |
+
documents = []
|
95 |
+
embeddings = []
|
96 |
+
metadata_list = []
|
97 |
+
ids = []
|
98 |
+
|
99 |
+
for idx, chunk in enumerate(processed_chunks):
|
100 |
+
embedding = self.embed_model.encode(chunk['text'])
|
101 |
+
documents.append(chunk['text'])
|
102 |
+
embeddings.append(embedding)
|
103 |
+
metadata_list.append({
|
104 |
+
"headings": json.dumps(chunk['headings']),
|
105 |
+
"page": chunk['page_info'],
|
106 |
+
"content_type": chunk['content_type']
|
107 |
+
})
|
108 |
+
ids.append(str(idx))
|
109 |
+
|
110 |
+
collection.add(
|
111 |
+
ids=ids,
|
112 |
+
embeddings=embeddings,
|
113 |
+
documents=documents,
|
114 |
+
metadatas=metadata_list
|
115 |
+
)
|
116 |
+
|
117 |
+
processing_time = time.time() - start_time
|
118 |
+
print(f"\nDocument processing completed in {processing_time:.2f} seconds")
|
119 |
+
return collection
|
utils/llm.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_community.embeddings.fastembed import FastEmbedEmbeddings
|
2 |
+
from langchain_groq import ChatGroq
|
3 |
+
import os
|
4 |
+
import json
|
5 |
+
from typing import List, Dict
|
6 |
+
|
7 |
+
class LLMProcessor:
|
8 |
+
def __init__(self):
|
9 |
+
"""Initialize embedding model and Groq LLM"""
|
10 |
+
self.api_key = os.getenv("GROQ_API_KEY")
|
11 |
+
|
12 |
+
# Use FastEmbed instead of SentenceTransformer
|
13 |
+
self.embed_model = FastEmbedEmbeddings()
|
14 |
+
|
15 |
+
self.llm = ChatGroq(
|
16 |
+
model_name="mixtral-8x7b-32768",
|
17 |
+
api_key=self.api_key
|
18 |
+
)
|
19 |
+
|
20 |
+
def format_context(self, chunks: List[Dict]) -> str:
|
21 |
+
"""Format retrieved chunks into a structured context for the LLM"""
|
22 |
+
context_parts = []
|
23 |
+
for chunk in chunks:
|
24 |
+
try:
|
25 |
+
headings = json.loads(chunk['headings'])
|
26 |
+
if headings:
|
27 |
+
context_parts.append(f"Section: {' > '.join(headings)}")
|
28 |
+
except:
|
29 |
+
pass
|
30 |
+
|
31 |
+
if chunk['page']:
|
32 |
+
context_parts.append(f"Page {chunk['page']}:")
|
33 |
+
|
34 |
+
context_parts.append(chunk['text'])
|
35 |
+
context_parts.append("-" * 40)
|
36 |
+
|
37 |
+
return "\n".join(context_parts)
|
38 |
+
|
39 |
+
def generate_answer(self, context: str, question: str) -> str:
|
40 |
+
"""Generate answer using structured context"""
|
41 |
+
prompt = f"""Based on the following excerpts from a document:
|
42 |
+
|
43 |
+
{context}
|
44 |
+
|
45 |
+
Please answer this question: {question}
|
46 |
+
|
47 |
+
Make use of the section information and page numbers in your answer when relevant.
|
48 |
+
"""
|
49 |
+
return self.llm.invoke(prompt)
|
utils/qa.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
from ingestion import DocumentProcessor
|
3 |
+
from llm import LLMProcessor
|
4 |
+
|
5 |
+
|
6 |
+
class QAEngine:
|
7 |
+
def __init__(self):
|
8 |
+
self.processor = DocumentProcessor()
|
9 |
+
self.llm_processor = LLMProcessor()
|
10 |
+
|
11 |
+
def query(self, question: str, k: int = 5) -> str:
|
12 |
+
"""Query the document using semantic search and generate an answer"""
|
13 |
+
query_embedding = self.llm_processor.embed_model.encode(question)
|
14 |
+
|
15 |
+
# Corrected ChromaDB query syntax
|
16 |
+
results = self.processor.index.query(
|
17 |
+
query_embeddings=[query_embedding],
|
18 |
+
n_results=k
|
19 |
+
)
|
20 |
+
|
21 |
+
# Extracting results properly
|
22 |
+
chunks = []
|
23 |
+
for i in range(len(results["documents"][0])): # Iterate over top-k results
|
24 |
+
chunks.append({
|
25 |
+
"text": results["documents"][0][i],
|
26 |
+
"headings": results["metadatas"][0][i].get("headings", "[]"),
|
27 |
+
"page": results["metadatas"][0][i].get("page"),
|
28 |
+
"content_type": results["metadatas"][0][i].get("content_type")
|
29 |
+
})
|
30 |
+
|
31 |
+
print(f"\nRelevant chunks for query: '{question}'")
|
32 |
+
print("=" * 80)
|
33 |
+
|
34 |
+
context = self.llm_processor.format_context(chunks)
|
35 |
+
print(context)
|
36 |
+
|
37 |
+
return self.llm_processor.generate_answer(context, question)
|
38 |
+
|
39 |
+
|
40 |
+
# def main():
|
41 |
+
# logging.basicConfig(level=logging.INFO)
|
42 |
+
|
43 |
+
# processor = DocumentProcessor()
|
44 |
+
|
45 |
+
# pdf_path = "sample/InternLM.pdf"
|
46 |
+
# processor.process_document(pdf_path)
|
47 |
+
|
48 |
+
# qa_engine = QAEngine()
|
49 |
+
# question = "What are the main features of InternLM-XComposer-2.5?"
|
50 |
+
# answer = qa_engine.query(question)
|
51 |
+
|
52 |
+
# print("\nAnswer:")
|
53 |
+
# print("=" * 80)
|
54 |
+
# print(answer)
|
55 |
+
|
56 |
+
|
57 |
+
# if __name__ == "__main__":
|
58 |
+
# main()
|