Spaces:
Running
Running
Update utils/qa.py
Browse files- utils/qa.py +4 -26
utils/qa.py
CHANGED
@@ -1,24 +1,23 @@
|
|
1 |
import logging
|
2 |
-
from ingestion import DocumentProcessor
|
3 |
-
from llm import LLMProcessor
|
4 |
|
5 |
|
6 |
class QAEngine:
|
7 |
def __init__(self):
|
8 |
self.processor = DocumentProcessor()
|
9 |
self.llm_processor = LLMProcessor()
|
|
|
10 |
|
11 |
def query(self, question: str, k: int = 5) -> str:
|
12 |
"""Query the document using semantic search and generate an answer"""
|
13 |
query_embedding = self.llm_processor.embed_model.encode(question)
|
14 |
|
15 |
-
|
16 |
-
results = self.processor.index.query(
|
17 |
query_embeddings=[query_embedding],
|
18 |
n_results=k
|
19 |
)
|
20 |
|
21 |
-
# Extracting results properly
|
22 |
chunks = []
|
23 |
for i in range(len(results["documents"][0])): # Iterate over top-k results
|
24 |
chunks.append({
|
@@ -35,24 +34,3 @@ class QAEngine:
|
|
35 |
print(context)
|
36 |
|
37 |
return self.llm_processor.generate_answer(context, question)
|
38 |
-
|
39 |
-
|
40 |
-
# def main():
|
41 |
-
# logging.basicConfig(level=logging.INFO)
|
42 |
-
|
43 |
-
# processor = DocumentProcessor()
|
44 |
-
|
45 |
-
# pdf_path = "sample/InternLM.pdf"
|
46 |
-
# processor.process_document(pdf_path)
|
47 |
-
|
48 |
-
# qa_engine = QAEngine()
|
49 |
-
# question = "What are the main features of InternLM-XComposer-2.5?"
|
50 |
-
# answer = qa_engine.query(question)
|
51 |
-
|
52 |
-
# print("\nAnswer:")
|
53 |
-
# print("=" * 80)
|
54 |
-
# print(answer)
|
55 |
-
|
56 |
-
|
57 |
-
# if __name__ == "__main__":
|
58 |
-
# main()
|
|
|
1 |
import logging
|
2 |
+
from utils.ingestion import DocumentProcessor
|
3 |
+
from utils.llm import LLMProcessor
|
4 |
|
5 |
|
6 |
class QAEngine:
|
7 |
def __init__(self):
|
8 |
self.processor = DocumentProcessor()
|
9 |
self.llm_processor = LLMProcessor()
|
10 |
+
self.collection = self.processor.client.get_or_create_collection("document_chunks") # Fix
|
11 |
|
12 |
def query(self, question: str, k: int = 5) -> str:
|
13 |
"""Query the document using semantic search and generate an answer"""
|
14 |
query_embedding = self.llm_processor.embed_model.encode(question)
|
15 |
|
16 |
+
results = self.collection.query(
|
|
|
17 |
query_embeddings=[query_embedding],
|
18 |
n_results=k
|
19 |
)
|
20 |
|
|
|
21 |
chunks = []
|
22 |
for i in range(len(results["documents"][0])): # Iterate over top-k results
|
23 |
chunks.append({
|
|
|
34 |
print(context)
|
35 |
|
36 |
return self.llm_processor.generate_answer(context, question)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|