NEXAS commited on
Commit
357a027
·
verified ·
1 Parent(s): 67a92d5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +47 -47
app.py CHANGED
@@ -1,48 +1,48 @@
1
- import streamlit as st
2
- import os
3
- from src.utils.ingest_text import create_vector_database
4
- from src.utils.ingest_image import extract_and_store_images
5
- from src.utils.text_qa import qa_bot
6
- from src.utils.image_qa import query_and_print_results
7
- import nest_asyncio
8
- nest_asyncio.apply()
9
-
10
- from dotenv import load_dotenv
11
- load_dotenv()
12
-
13
- def get_answer(query,chain):
14
- response = chain.invoke(query)
15
- return response['result']
16
-
17
- st.title("MULTIMODAL DOC QA")
18
- uploaded_file = st.file_uploader("File upload",type="pdf")
19
- if uploaded_file is not None:
20
- # Save the uploaded file to a temporary location
21
- with open(uploaded_file.name, "wb") as f:
22
- f.write(uploaded_file.getbuffer())
23
-
24
- # Get the absolute path of the saved file
25
- path = os.path.abspath(uploaded_file.name)
26
- st.write(f"File saved to: {path}")
27
- print(path)
28
-
29
- st.write("Document uploaded successfuly!")
30
-
31
-
32
- if st.button("Start Processing"):
33
- with st.spinner("Processing"):
34
- client = create_vector_database(path)
35
- image_vdb = extract_and_store_images(path)
36
- chain = qa_bot(client)
37
-
38
-
39
- if user_input := st.chat_input("User Input"):
40
- with st.chat_message("user"):
41
- st.markdown(user_input)
42
-
43
- with st.spinner("Generating Response..."):
44
- response = get_answer(chain,user_input)
45
- answer = response['result']
46
- st.markdown(answer)
47
- query_and_print_results(image_vdb,user_input)
48
 
 
1
+ import streamlit as st
2
+ import os
3
+ from src.utils.ingest_text import create_vector_database
4
+ from src.utils.ingest_image import extract_and_store_images
5
+ from src.utils.text_qa import qa_bot
6
+ from src.utils.image_qa import query_and_print_results
7
+ import nest_asyncio
8
+ nest_asyncio.apply()
9
+
10
+ from dotenv import load_dotenv
11
+ load_dotenv()
12
+
13
+ def get_answer(query,chain):
14
+ response = chain.invoke(query)
15
+ return response['result']
16
+
17
+ st.title("MULTIMODAL DOC QA")
18
+ uploaded_file = st.file_uploader("File upload",type="pdf")
19
+ if uploaded_file is not None:
20
+ # Save the uploaded file to a temporary location
21
+ with open(uploaded_file.name, "wb") as f:
22
+ f.write(uploaded_file.getbuffer())
23
+
24
+ # Get the absolute path of the saved file
25
+ path = os.path.abspath(uploaded_file.name)
26
+ st.write(f"File saved to: {path}")
27
+ print(path)
28
+
29
+ st.write("Document uploaded successfuly!")
30
+
31
+
32
+ if st.button("Start Processing"):
33
+ with st.spinner("Processing"):
34
+ client = create_vector_database(path)
35
+ image_vdb = extract_and_store_images(path)
36
+ chain = qa_bot(client)
37
+
38
+
39
+ if user_input := st.chat_input("User Input"):
40
+ with st.chat_message("user"):
41
+ st.markdown(user_input)
42
+
43
+ with st.spinner("Generating Response..."):
44
+ response = get_answer(chain,user_input)
45
+ answer = response['result']
46
+ st.markdown(answer)
47
+ query_and_print_results(image_vdb,user_input)
48