Spaces:
Sleeping
Sleeping
Update src/utils/ingest_text.py
Browse files- src/utils/ingest_text.py +115 -115
src/utils/ingest_text.py
CHANGED
@@ -1,116 +1,116 @@
|
|
1 |
-
from llama_parse import LlamaParse
|
2 |
-
from langchain_chroma import Chroma
|
3 |
-
from qdrant_client import QdrantClient
|
4 |
-
from langchain_community.vectorstores.qdrant import Qdrant
|
5 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
-
from langchain_community.embeddings.fastembed import FastEmbedEmbeddings
|
7 |
-
from langchain_community.document_loaders.directory import DirectoryLoader
|
8 |
-
import os
|
9 |
-
from fastembed import TextEmbedding
|
10 |
-
from typing import List
|
11 |
-
|
12 |
-
import nest_asyncio
|
13 |
-
nest_asyncio.apply()
|
14 |
-
|
15 |
-
llamaparse_api_key = os.getenv("LLAMA_CLOUD_API_KEY")
|
16 |
-
#qdrant_url = os.getenv("QDRANT_URL ")
|
17 |
-
#qdrant_api_key = os.getenv("QDRANT_API_KEY")
|
18 |
-
groq_api_key = os.getenv("GROQ_API_KEY")
|
19 |
-
|
20 |
-
|
21 |
-
parsed_data_file = r"
|
22 |
-
output_md = r"
|
23 |
-
loki = r"
|
24 |
-
|
25 |
-
import pickle
|
26 |
-
# Define a function to load parsed data if available, or parse if not
|
27 |
-
def load_or_parse_data(loc):
|
28 |
-
data_file = parsed_data_file
|
29 |
-
|
30 |
-
if os.path.exists(data_file):
|
31 |
-
# Load the parsed data from the file
|
32 |
-
with open(data_file, "rb") as f:
|
33 |
-
parsed_data = pickle.load(f)
|
34 |
-
else:
|
35 |
-
# Perform the parsing step and store the result in llama_parse_documents
|
36 |
-
parsingInstructiontest10k = """The provided document is an user guide or a manual.
|
37 |
-
It contains many images and tables.
|
38 |
-
Try to be precise while answering the questions"""
|
39 |
-
parser = LlamaParse(api_key=llamaparse_api_key, result_type="markdown", parsing_instruction=parsingInstructiontest10k) # type: ignore
|
40 |
-
llama_parse_documents = parser.load_data(loc)
|
41 |
-
|
42 |
-
|
43 |
-
# Save the parsed data to a file
|
44 |
-
with open(data_file, "wb") as f:
|
45 |
-
pickle.dump(llama_parse_documents, f)
|
46 |
-
|
47 |
-
# Set the parsed data to the variable
|
48 |
-
parsed_data = llama_parse_documents
|
49 |
-
|
50 |
-
return parsed_data
|
51 |
-
|
52 |
-
|
53 |
-
# Create vector database
|
54 |
-
def create_vector_database(loc):
|
55 |
-
"""
|
56 |
-
Creates a vector database using document loaders and embeddings.
|
57 |
-
|
58 |
-
This function loads urls,
|
59 |
-
splits the loaded documents into chunks, transforms them into embeddings using OllamaEmbeddings,
|
60 |
-
and finally persists the embeddings into a Chroma vector database.
|
61 |
-
|
62 |
-
"""
|
63 |
-
# Call the function to either load or parse the data
|
64 |
-
llama_parse_documents = load_or_parse_data(loc)
|
65 |
-
#print(llama_parse_documents[1].text[:100])
|
66 |
-
|
67 |
-
#with open('data/output.md', 'a') as f: # Open the file in append mode ('a')
|
68 |
-
# for doc in llama_parse_documents:
|
69 |
-
# f.write(doc.text + '\n')
|
70 |
-
with open(output_md,'a', encoding='utf-8') as f: # Open the file in append mode ('a')
|
71 |
-
for doc in llama_parse_documents:
|
72 |
-
f.write(doc.text + '\n')
|
73 |
-
|
74 |
-
loader = DirectoryLoader(loki, glob="**/*.md", show_progress=True)
|
75 |
-
documents = loader.load()
|
76 |
-
# Split loaded documents into chunks
|
77 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=100)
|
78 |
-
print('data chunckex')
|
79 |
-
docs = text_splitter.split_documents(documents)
|
80 |
-
print(len(docs))
|
81 |
-
|
82 |
-
#len(docs)
|
83 |
-
#docs[0]
|
84 |
-
|
85 |
-
# Initialize Embeddings
|
86 |
-
embeddings = FastEmbedEmbeddings() # type: ignore
|
87 |
-
#embeddings = TextEmbedding()
|
88 |
-
|
89 |
-
print('Vector DB started!')
|
90 |
-
|
91 |
-
# Create and persist a Chroma vector database from the chunked documents
|
92 |
-
qdrant = Qdrant.from_documents(
|
93 |
-
documents=docs,
|
94 |
-
embedding=embeddings,
|
95 |
-
path="local_qdrant",
|
96 |
-
#url=qdrant_url,
|
97 |
-
collection_name="rag"
|
98 |
-
#api_key=qdrant_api_key
|
99 |
-
)
|
100 |
-
# save to disk
|
101 |
-
#db2 = Chroma.from_documents(docs, embeddings, persist_directory="./chroma_db")
|
102 |
-
#docs = db2.similarity_search(query)
|
103 |
-
|
104 |
-
# load from disk
|
105 |
-
#db3 = Chroma(persist_directory="./chroma_db", embedding_function=embeddings)
|
106 |
-
|
107 |
-
#query it
|
108 |
-
#query = "what is the agend of Financial Statements for 2022 ?"
|
109 |
-
#found_doc = qdrant.similarity_search(query, k=3)
|
110 |
-
#print(found_doc[0][:100])
|
111 |
-
#
|
112 |
-
print('Vector DB created successfully !')
|
113 |
-
#query = "Switching between external devices connected to the TV"
|
114 |
-
#found_doc = qdrant.similarity_search(query, k=3)
|
115 |
-
#print(found_doc)
|
116 |
return qdrant
|
|
|
1 |
+
from llama_parse import LlamaParse
|
2 |
+
from langchain_chroma import Chroma
|
3 |
+
from qdrant_client import QdrantClient
|
4 |
+
from langchain_community.vectorstores.qdrant import Qdrant
|
5 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
+
from langchain_community.embeddings.fastembed import FastEmbedEmbeddings
|
7 |
+
from langchain_community.document_loaders.directory import DirectoryLoader
|
8 |
+
import os
|
9 |
+
from fastembed import TextEmbedding
|
10 |
+
from typing import List
|
11 |
+
|
12 |
+
import nest_asyncio
|
13 |
+
nest_asyncio.apply()
|
14 |
+
|
15 |
+
llamaparse_api_key = os.getenv("LLAMA_CLOUD_API_KEY")
|
16 |
+
#qdrant_url = os.getenv("QDRANT_URL ")
|
17 |
+
#qdrant_api_key = os.getenv("QDRANT_API_KEY")
|
18 |
+
groq_api_key = os.getenv("GROQ_API_KEY")
|
19 |
+
|
20 |
+
|
21 |
+
parsed_data_file = r".\data\parsed_data.pkl"
|
22 |
+
output_md = r".\data\output.md"
|
23 |
+
loki = r".\data"
|
24 |
+
|
25 |
+
import pickle
|
26 |
+
# Define a function to load parsed data if available, or parse if not
|
27 |
+
def load_or_parse_data(loc):
|
28 |
+
data_file = parsed_data_file
|
29 |
+
|
30 |
+
if os.path.exists(data_file):
|
31 |
+
# Load the parsed data from the file
|
32 |
+
with open(data_file, "rb") as f:
|
33 |
+
parsed_data = pickle.load(f)
|
34 |
+
else:
|
35 |
+
# Perform the parsing step and store the result in llama_parse_documents
|
36 |
+
parsingInstructiontest10k = """The provided document is an user guide or a manual.
|
37 |
+
It contains many images and tables.
|
38 |
+
Try to be precise while answering the questions"""
|
39 |
+
parser = LlamaParse(api_key=llamaparse_api_key, result_type="markdown", parsing_instruction=parsingInstructiontest10k) # type: ignore
|
40 |
+
llama_parse_documents = parser.load_data(loc)
|
41 |
+
|
42 |
+
|
43 |
+
# Save the parsed data to a file
|
44 |
+
with open(data_file, "wb") as f:
|
45 |
+
pickle.dump(llama_parse_documents, f)
|
46 |
+
|
47 |
+
# Set the parsed data to the variable
|
48 |
+
parsed_data = llama_parse_documents
|
49 |
+
|
50 |
+
return parsed_data
|
51 |
+
|
52 |
+
|
53 |
+
# Create vector database
|
54 |
+
def create_vector_database(loc):
|
55 |
+
"""
|
56 |
+
Creates a vector database using document loaders and embeddings.
|
57 |
+
|
58 |
+
This function loads urls,
|
59 |
+
splits the loaded documents into chunks, transforms them into embeddings using OllamaEmbeddings,
|
60 |
+
and finally persists the embeddings into a Chroma vector database.
|
61 |
+
|
62 |
+
"""
|
63 |
+
# Call the function to either load or parse the data
|
64 |
+
llama_parse_documents = load_or_parse_data(loc)
|
65 |
+
#print(llama_parse_documents[1].text[:100])
|
66 |
+
|
67 |
+
#with open('data/output.md', 'a') as f: # Open the file in append mode ('a')
|
68 |
+
# for doc in llama_parse_documents:
|
69 |
+
# f.write(doc.text + '\n')
|
70 |
+
with open(output_md,'a', encoding='utf-8') as f: # Open the file in append mode ('a')
|
71 |
+
for doc in llama_parse_documents:
|
72 |
+
f.write(doc.text + '\n')
|
73 |
+
|
74 |
+
loader = DirectoryLoader(loki, glob="**/*.md", show_progress=True)
|
75 |
+
documents = loader.load()
|
76 |
+
# Split loaded documents into chunks
|
77 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=100)
|
78 |
+
print('data chunckex')
|
79 |
+
docs = text_splitter.split_documents(documents)
|
80 |
+
print(len(docs))
|
81 |
+
|
82 |
+
#len(docs)
|
83 |
+
#docs[0]
|
84 |
+
|
85 |
+
# Initialize Embeddings
|
86 |
+
embeddings = FastEmbedEmbeddings() # type: ignore
|
87 |
+
#embeddings = TextEmbedding()
|
88 |
+
|
89 |
+
print('Vector DB started!')
|
90 |
+
|
91 |
+
# Create and persist a Chroma vector database from the chunked documents
|
92 |
+
qdrant = Qdrant.from_documents(
|
93 |
+
documents=docs,
|
94 |
+
embedding=embeddings,
|
95 |
+
path="local_qdrant",
|
96 |
+
#url=qdrant_url,
|
97 |
+
collection_name="rag"
|
98 |
+
#api_key=qdrant_api_key
|
99 |
+
)
|
100 |
+
# save to disk
|
101 |
+
#db2 = Chroma.from_documents(docs, embeddings, persist_directory="./chroma_db")
|
102 |
+
#docs = db2.similarity_search(query)
|
103 |
+
|
104 |
+
# load from disk
|
105 |
+
#db3 = Chroma(persist_directory="./chroma_db", embedding_function=embeddings)
|
106 |
+
|
107 |
+
#query it
|
108 |
+
#query = "what is the agend of Financial Statements for 2022 ?"
|
109 |
+
#found_doc = qdrant.similarity_search(query, k=3)
|
110 |
+
#print(found_doc[0][:100])
|
111 |
+
#
|
112 |
+
print('Vector DB created successfully !')
|
113 |
+
#query = "Switching between external devices connected to the TV"
|
114 |
+
#found_doc = qdrant.similarity_search(query, k=3)
|
115 |
+
#print(found_doc)
|
116 |
return qdrant
|