Spaces:
Running
Running
Update src/utils/ingest_text.py
Browse files- src/utils/ingest_text.py +66 -90
src/utils/ingest_text.py
CHANGED
@@ -1,120 +1,96 @@
|
|
|
|
|
|
|
|
1 |
from llama_parse import LlamaParse
|
2 |
-
from langchain_chroma import Chroma
|
3 |
-
from qdrant_client import QdrantClient
|
4 |
-
from langchain_community.vectorstores.qdrant import Qdrant
|
5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
-
from langchain_community.embeddings.fastembed import FastEmbedEmbeddings
|
7 |
from langchain_community.document_loaders.directory import DirectoryLoader
|
8 |
-
import
|
9 |
-
from
|
10 |
-
from
|
11 |
import nltk
|
12 |
-
nltk.download('punkt')
|
13 |
-
|
14 |
-
|
15 |
import nest_asyncio
|
|
|
|
|
|
|
16 |
nest_asyncio.apply()
|
17 |
|
|
|
|
|
|
|
|
|
|
|
18 |
llamaparse_api_key = os.getenv("LLAMA_CLOUD_API_KEY")
|
19 |
-
#qdrant_url = os.getenv("QDRANT_URL ")
|
20 |
-
#qdrant_api_key = os.getenv("QDRANT_API_KEY")
|
21 |
groq_api_key = os.getenv("GROQ_API_KEY")
|
22 |
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
import pickle
|
29 |
-
# Define a function to load parsed data if available, or parse if not
|
30 |
-
def load_or_parse_data(loc):
|
31 |
-
data_file = parsed_data_file
|
32 |
-
|
33 |
-
if os.path.exists(data_file):
|
34 |
-
# Load the parsed data from the file
|
35 |
-
with open(data_file, "rb") as f:
|
36 |
parsed_data = pickle.load(f)
|
37 |
else:
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
parser = LlamaParse(api_key=llamaparse_api_key, result_type="markdown", parsing_instruction=parsingInstructiontest10k) # type: ignore
|
43 |
-
llama_parse_documents = parser.load_data(loc)
|
44 |
-
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
pickle.dump(llama_parse_documents, f)
|
49 |
-
|
50 |
-
# Set the parsed data to the variable
|
51 |
-
parsed_data = llama_parse_documents
|
52 |
|
53 |
return parsed_data
|
54 |
|
|
|
|
|
|
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
Creates a vector database using document loaders and embeddings.
|
60 |
|
61 |
-
|
62 |
-
splits the loaded documents into chunks, transforms them into embeddings using OllamaEmbeddings,
|
63 |
-
and finally persists the embeddings into a Chroma vector database.
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
|
71 |
-
#
|
72 |
-
|
73 |
-
|
74 |
-
with open(output_md,'a', encoding='utf-8') as f: # Open the file in append mode ('a')
|
75 |
-
for doc in llama_parse_documents:
|
76 |
-
f.write(doc.text + '\n')
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
|
86 |
-
|
87 |
-
|
88 |
|
89 |
-
#
|
90 |
-
|
91 |
-
|
|
|
92 |
|
93 |
-
|
|
|
94 |
|
95 |
-
# Create
|
|
|
96 |
qdrant = Qdrant.from_documents(
|
97 |
documents=docs,
|
98 |
embedding=embeddings,
|
99 |
-
path=
|
100 |
-
|
101 |
-
collection_name="rag"
|
102 |
-
#api_key=qdrant_api_key
|
103 |
)
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
# load from disk
|
109 |
-
#db3 = Chroma(persist_directory="./chroma_db", embedding_function=embeddings)
|
110 |
-
|
111 |
-
#query it
|
112 |
-
#query = "what is the agend of Financial Statements for 2022 ?"
|
113 |
-
#found_doc = qdrant.similarity_search(query, k=3)
|
114 |
-
#print(found_doc[0][:100])
|
115 |
-
#
|
116 |
-
print('Vector DB created successfully !')
|
117 |
-
#query = "Switching between external devices connected to the TV"
|
118 |
-
#found_doc = qdrant.similarity_search(query, k=3)
|
119 |
-
#print(found_doc)
|
120 |
-
return qdrant
|
|
|
1 |
+
import os
|
2 |
+
import pickle
|
3 |
+
from typing import List
|
4 |
from llama_parse import LlamaParse
|
|
|
|
|
|
|
5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
|
6 |
from langchain_community.document_loaders.directory import DirectoryLoader
|
7 |
+
from langchain_community.document_loaders import TextLoader
|
8 |
+
from langchain_community.vectorstores.qdrant import Qdrant
|
9 |
+
from langchain_community.embeddings.fastembed import FastEmbedEmbeddings
|
10 |
import nltk
|
|
|
|
|
|
|
11 |
import nest_asyncio
|
12 |
+
|
13 |
+
# Setup
|
14 |
+
nltk.download('punkt')
|
15 |
nest_asyncio.apply()
|
16 |
|
17 |
+
# Load environment variables
|
18 |
+
from dotenv import load_dotenv
|
19 |
+
load_dotenv()
|
20 |
+
|
21 |
+
# Environment keys
|
22 |
llamaparse_api_key = os.getenv("LLAMA_CLOUD_API_KEY")
|
|
|
|
|
23 |
groq_api_key = os.getenv("GROQ_API_KEY")
|
24 |
|
25 |
+
# Paths
|
26 |
+
parsed_data_file = os.path.join("data", "parsed_data.pkl")
|
27 |
+
output_md = os.path.join("data", "output.md")
|
28 |
+
md_directory = "data"
|
29 |
+
collection_name = "rag"
|
30 |
|
31 |
+
# Helper: Load or parse PDF
|
32 |
+
def load_or_parse_data(pdf_path):
|
33 |
+
if os.path.exists(parsed_data_file):
|
34 |
+
with open(parsed_data_file, "rb") as f:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
parsed_data = pickle.load(f)
|
36 |
else:
|
37 |
+
parsing_instruction = """The provided document is a user guide or manual.
|
38 |
+
It contains many images and tables. Be precise while answering questions."""
|
39 |
+
parser = LlamaParse(api_key=llamaparse_api_key, result_type="markdown", parsing_instruction=parsing_instruction) # type: ignore
|
40 |
+
parsed_data = parser.load_data(pdf_path)
|
|
|
|
|
|
|
41 |
|
42 |
+
with open(parsed_data_file, "wb") as f:
|
43 |
+
pickle.dump(parsed_data, f)
|
|
|
|
|
|
|
|
|
44 |
|
45 |
return parsed_data
|
46 |
|
47 |
+
# Main vector DB builder
|
48 |
+
def create_vector_database(pdf_path):
|
49 |
+
print("🧠 Starting vector DB creation...")
|
50 |
|
51 |
+
parsed_docs = load_or_parse_data(pdf_path)
|
52 |
+
if not parsed_docs:
|
53 |
+
raise ValueError("❌ No parsed documents returned from LlamaParse!")
|
|
|
54 |
|
55 |
+
os.makedirs(md_directory, exist_ok=True)
|
|
|
|
|
56 |
|
57 |
+
# Write Markdown content to file (overwrite)
|
58 |
+
with open(output_md, 'w', encoding='utf-8') as f:
|
59 |
+
for doc in parsed_docs:
|
60 |
+
if hasattr(doc, "text") and doc.text.strip():
|
61 |
+
f.write(doc.text.strip() + "\n\n")
|
62 |
|
63 |
+
# Ensure .md file was written
|
64 |
+
if not os.path.exists(output_md) or os.path.getsize(output_md) == 0:
|
65 |
+
raise RuntimeError("❌ Markdown file was not created or is empty!")
|
|
|
|
|
|
|
66 |
|
67 |
+
# Load documents
|
68 |
+
try:
|
69 |
+
loader = DirectoryLoader(md_directory, glob="**/*.md", show_progress=True)
|
70 |
+
documents = loader.load()
|
71 |
+
except Exception as e:
|
72 |
+
print("⚠️ DirectoryLoader failed, falling back to TextLoader...")
|
73 |
+
documents = TextLoader(output_md, encoding='utf-8').load()
|
74 |
|
75 |
+
if not documents:
|
76 |
+
raise RuntimeError("❌ No documents loaded from markdown!")
|
77 |
|
78 |
+
# Split documents
|
79 |
+
splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=100)
|
80 |
+
docs = splitter.split_documents(documents)
|
81 |
+
print(f"✅ Loaded and split {len(docs)} chunks.")
|
82 |
|
83 |
+
# Embedding
|
84 |
+
embeddings = FastEmbedEmbeddings() # type: ignore
|
85 |
|
86 |
+
# Create vector store
|
87 |
+
print("📦 Creating Qdrant vector DB...")
|
88 |
qdrant = Qdrant.from_documents(
|
89 |
documents=docs,
|
90 |
embedding=embeddings,
|
91 |
+
path=os.path.join("data", "local_qdrant"),
|
92 |
+
collection_name=collection_name,
|
|
|
|
|
93 |
)
|
94 |
+
|
95 |
+
print("✅ Vector DB created successfully.")
|
96 |
+
return qdrant
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|