import streamlit as st import tempfile import base64 import os import nltk nltk.download('punkt') from src.utils.ingest_text import create_vector_database from src.utils.ingest_image import extract_and_store_images from src.utils.text_qa import qa_bot from src.utils.image_qa import query_and_print_results import nest_asyncio from langchain.memory import ConversationBufferWindowMemory from langchain_community.chat_message_histories import StreamlitChatMessageHistory from dotenv import load_dotenv # Setup nest_asyncio.apply() load_dotenv() st.set_page_config(layout='wide', page_title="InsightFusion Chat") # ---- Session State Initialization ---- if "messages" not in st.session_state: st.session_state.messages = [] if "chain" not in st.session_state: st.session_state.chain = None if "image_vdb" not in st.session_state: st.session_state.image_vdb = None # ---- Chat Memory Setup ---- memory_storage = StreamlitChatMessageHistory(key="chat_messages") memory = ConversationBufferWindowMemory( memory_key="chat_history", human_prefix="User", chat_memory=memory_storage, k=3 ) # ---- Background Image Setup ---- image_bg = r"data/pexels-andreea-ch-371539-1166644.jpg" def add_bg_from_local(image_file): with open(image_file, "rb") as img: encoded_string = base64.b64encode(img.read()) st.markdown(f"""""", unsafe_allow_html=True) add_bg_from_local(image_bg) # ---- Title ---- st.markdown(""" InsightFusion Chat """, unsafe_allow_html=True) # ---- Utility ---- def get_answer(query, chain): try: response = chain.invoke(query) return response['result'] except Exception as e: st.error(f"Error in get_answer: {e}") return None # ---- File Upload ---- path = None uploaded_file = st.file_uploader("Upload a PDF file", type="pdf") if uploaded_file is not None: temp_file_path = os.path.join("temp", uploaded_file.name) os.makedirs("temp", exist_ok=True) with open(temp_file_path, "wb") as f: f.write(uploaded_file.getbuffer()) path = os.path.abspath(temp_file_path) st.success("Document uploaded successfully!") st.write(f"File saved to: {path}") # ---- Demo PDF Option ---- st.markdown("### Or use a demo file:") if st.button("Use Demo PDF"): demo_file_path = os.path.join("pdf_resource", "sample.pdf") # Replace with actual demo name if os.path.exists(demo_file_path): path = os.path.abspath(demo_file_path) st.success(f"Using demo file: {path}") with st.spinner("Processing demo file..."): try: client = create_vector_database(path) image_vdb = extract_and_store_images(path) chain = qa_bot(client) st.session_state.chain = chain st.session_state.image_vdb = image_vdb st.success("Demo file processed successfully.") except Exception as e: st.error(f"Error processing demo PDF: {e}") else: st.error("Demo PDF not found in pdf_resource/.") # ---- Processing Button ---- if st.button("Start Processing"): if path is not None: with st.spinner("Processing file..."): try: client = create_vector_database(path) image_vdb = extract_and_store_images(path) chain = qa_bot(client) st.session_state.chain = chain st.session_state.image_vdb = image_vdb st.success("File processed successfully.") except Exception as e: st.error(f"Error during processing: {e}") else: st.error("Please upload a file or select a demo.") # ---- Style Customization ---- st.markdown(""" """, unsafe_allow_html=True) # ---- Chat Interface ---- if user_input := st.chat_input("User Input"): if st.session_state.chain and st.session_state.image_vdb: with st.chat_message("user"): st.markdown(user_input) with st.spinner("Generating Response..."): response = get_answer(user_input, st.session_state.chain) if response: with st.chat_message("assistant"): st.markdown(response) memory.save_context({"input": user_input}, {"output": response}) st.session_state.messages.append({"role": "user", "content": user_input}) st.session_state.messages.append({"role": "assistant", "content": response}) try: query_and_print_results(st.session_state.image_vdb, user_input) except Exception as e: st.error(f"Error querying image database: {e}") else: st.error("Failed to generate a response.") else: st.error("Please process a file before chatting.") # ---- Display Chat History ---- for msg in st.session_state.messages: with st.chat_message(msg["role"]): st.write(msg["content"]) # ---- Display Memory History (LangChain) ---- for i, msg in enumerate(memory_storage.messages): role = "user" if i % 2 == 0 else "assistant" st.chat_message(role).markdown(msg.content)