Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,17 +1,13 @@
|
|
1 |
import os
|
2 |
import streamlit as st
|
3 |
import requests
|
4 |
-
import PyPDF2
|
5 |
-
from sentence_transformers import SentenceTransformer
|
6 |
-
import faiss
|
7 |
-
import nltk
|
8 |
from groq import Groq
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
|
16 |
# Initialize Groq client
|
17 |
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
|
@@ -34,41 +30,38 @@ def extract_text_from_pdf(pdf_url):
|
|
34 |
os.remove("temp.pdf")
|
35 |
return text
|
36 |
|
37 |
-
# Function to chunk text
|
38 |
def chunk_text(text, chunk_size=300):
|
39 |
-
|
|
|
40 |
chunks = []
|
41 |
current_chunk = []
|
42 |
-
current_length = 0
|
43 |
|
44 |
-
for
|
45 |
-
|
46 |
-
|
47 |
-
current_chunk.append(sentence)
|
48 |
else:
|
49 |
chunks.append(" ".join(current_chunk))
|
50 |
-
current_chunk = [
|
51 |
-
current_length = len(sentence.split())
|
52 |
|
53 |
if current_chunk:
|
54 |
chunks.append(" ".join(current_chunk))
|
55 |
return chunks
|
56 |
|
57 |
-
# Function to create embeddings and store them in FAISS
|
58 |
def create_faiss_index(chunks):
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
return results
|
72 |
|
73 |
# Main Streamlit App
|
74 |
def main():
|
@@ -89,10 +82,9 @@ def main():
|
|
89 |
if 'document_text' in st.session_state and "faiss_index" not in st.session_state:
|
90 |
st.write("Processing document...")
|
91 |
chunks = chunk_text(st.session_state['document_text'])
|
92 |
-
|
93 |
-
st.session_state['faiss_index'] =
|
94 |
st.session_state['chunks'] = chunks
|
95 |
-
st.session_state['model'] = SentenceTransformer("all-MiniLM-L6-v2")
|
96 |
st.success(f"Document processed into {len(chunks)} chunks!")
|
97 |
|
98 |
# Query the Document
|
@@ -100,4 +92,18 @@ def main():
|
|
100 |
st.header("Ask Questions")
|
101 |
query = st.text_input("Enter your question here")
|
102 |
if st.button("Query Document"):
|
103 |
-
results = query_faiss(st.session_state['faiss_index'],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import streamlit as st
|
3 |
import requests
|
|
|
|
|
|
|
|
|
4 |
from groq import Groq
|
5 |
+
from langchain.chains import AnalyzeDocumentChain
|
6 |
+
from langchain.prompts import PromptTemplate
|
7 |
+
from langchain.document_loaders import TextLoader
|
8 |
+
from langchain.vectorstores import FAISS
|
9 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
10 |
+
from sentence_transformers import SentenceTransformer
|
11 |
|
12 |
# Initialize Groq client
|
13 |
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
|
|
|
30 |
os.remove("temp.pdf")
|
31 |
return text
|
32 |
|
33 |
+
# Function to chunk text manually
|
34 |
def chunk_text(text, chunk_size=300):
|
35 |
+
# Split text by spaces and process into chunks
|
36 |
+
words = text.split()
|
37 |
chunks = []
|
38 |
current_chunk = []
|
|
|
39 |
|
40 |
+
for word in words:
|
41 |
+
if len(current_chunk) + len(word.split()) <= chunk_size:
|
42 |
+
current_chunk.append(word)
|
|
|
43 |
else:
|
44 |
chunks.append(" ".join(current_chunk))
|
45 |
+
current_chunk = [word]
|
|
|
46 |
|
47 |
if current_chunk:
|
48 |
chunks.append(" ".join(current_chunk))
|
49 |
return chunks
|
50 |
|
51 |
+
# Function to create embeddings and store them in FAISS using Langchain
|
52 |
def create_faiss_index(chunks):
|
53 |
+
# Use SentenceTransformer for embeddings
|
54 |
+
embeddings_model = SentenceTransformer("all-MiniLM-L6-v2")
|
55 |
+
embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
56 |
+
|
57 |
+
# Create FAISS vector store
|
58 |
+
doc_search = FAISS.from_texts(chunks, embeddings)
|
59 |
+
return doc_search
|
60 |
+
|
61 |
+
# Function to query FAISS and retrieve relevant document chunks
|
62 |
+
def query_faiss(doc_search, query):
|
63 |
+
results = doc_search.similarity_search(query, k=3)
|
64 |
+
return [result.page_content for result in results]
|
|
|
65 |
|
66 |
# Main Streamlit App
|
67 |
def main():
|
|
|
82 |
if 'document_text' in st.session_state and "faiss_index" not in st.session_state:
|
83 |
st.write("Processing document...")
|
84 |
chunks = chunk_text(st.session_state['document_text'])
|
85 |
+
doc_search = create_faiss_index(chunks)
|
86 |
+
st.session_state['faiss_index'] = doc_search
|
87 |
st.session_state['chunks'] = chunks
|
|
|
88 |
st.success(f"Document processed into {len(chunks)} chunks!")
|
89 |
|
90 |
# Query the Document
|
|
|
92 |
st.header("Ask Questions")
|
93 |
query = st.text_input("Enter your question here")
|
94 |
if st.button("Query Document"):
|
95 |
+
results = query_faiss(st.session_state['faiss_index'], query)
|
96 |
+
st.write("### Results from Document:")
|
97 |
+
for i, result in enumerate(results):
|
98 |
+
st.write(f"**Result {i+1}:** {result}")
|
99 |
+
|
100 |
+
# Use Groq API for additional insights
|
101 |
+
chat_completion = client.chat.completions.create(
|
102 |
+
messages=[{"role": "user", "content": query}],
|
103 |
+
model="llama-3.3-70b-versatile",
|
104 |
+
)
|
105 |
+
st.write("### Insights from Groq-powered Model:")
|
106 |
+
st.write(chat_completion.choices[0].message.content)
|
107 |
+
|
108 |
+
if __name__ == "__main__":
|
109 |
+
main()
|