Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,8 @@
|
|
1 |
import os
|
2 |
import streamlit as st
|
3 |
import requests
|
4 |
-
import PyPDF2
|
5 |
from groq import Groq
|
6 |
-
from langchain.chains import AnalyzeDocumentChain
|
7 |
-
from langchain.prompts import PromptTemplate
|
8 |
-
from langchain.document_loaders import TextLoader
|
9 |
from langchain.vectorstores import FAISS
|
10 |
from langchain.embeddings import HuggingFaceEmbeddings
|
11 |
from sentence_transformers import SentenceTransformer
|
@@ -24,7 +21,7 @@ def extract_text_from_pdf(pdf_url):
|
|
24 |
|
25 |
# Read the PDF content
|
26 |
with open("temp.pdf", "rb") as f:
|
27 |
-
reader = PyPDF2.PdfReader(f)
|
28 |
text = ""
|
29 |
for page in reader.pages:
|
30 |
text += page.extract_text()
|
@@ -94,17 +91,28 @@ def main():
|
|
94 |
query = st.text_input("Enter your question here")
|
95 |
if st.button("Query Document"):
|
96 |
results = query_faiss(st.session_state['faiss_index'], query)
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
if __name__ == "__main__":
|
110 |
main()
|
|
|
1 |
import os
|
2 |
import streamlit as st
|
3 |
import requests
|
4 |
+
import PyPDF2
|
5 |
from groq import Groq
|
|
|
|
|
|
|
6 |
from langchain.vectorstores import FAISS
|
7 |
from langchain.embeddings import HuggingFaceEmbeddings
|
8 |
from sentence_transformers import SentenceTransformer
|
|
|
21 |
|
22 |
# Read the PDF content
|
23 |
with open("temp.pdf", "rb") as f:
|
24 |
+
reader = PyPDF2.PdfReader(f)
|
25 |
text = ""
|
26 |
for page in reader.pages:
|
27 |
text += page.extract_text()
|
|
|
91 |
query = st.text_input("Enter your question here")
|
92 |
if st.button("Query Document"):
|
93 |
results = query_faiss(st.session_state['faiss_index'], query)
|
94 |
+
if not results:
|
95 |
+
st.warning("No relevant context found in the document.")
|
96 |
+
else:
|
97 |
+
st.write("### Results from Document:")
|
98 |
+
for i, result in enumerate(results):
|
99 |
+
st.write(f"**Result {i+1}:** {result}")
|
100 |
+
|
101 |
+
# Combine results to provide context
|
102 |
+
context = "\n".join(results)
|
103 |
+
st.write("### Insights based on Document Context:")
|
104 |
+
prompt = (
|
105 |
+
f"The following context is from the document:\n\n"
|
106 |
+
f"{context}\n\n"
|
107 |
+
f"Based on this context, answer the question:\n"
|
108 |
+
f"{query}"
|
109 |
+
)
|
110 |
+
|
111 |
+
chat_completion = client.chat.completions.create(
|
112 |
+
messages=[{"role": "user", "content": prompt}],
|
113 |
+
model="llama-3.3-70b-versatile",
|
114 |
+
)
|
115 |
+
st.write(chat_completion.choices[0].message.content)
|
116 |
|
117 |
if __name__ == "__main__":
|
118 |
main()
|