NKASG commited on
Commit
fd27a87
·
verified ·
1 Parent(s): 586733f

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +28 -0
app.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForImageClassification
3
+ from PIL import Image
4
+ import requests
5
+ import torch
6
+
7
+ # Load model from Hugging Face model hub
8
+ model_name = "your-username/your-model-name" # Replace with your model's name on Hugging Face
9
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
10
+ model = AutoModelForImageClassification.from_pretrained(model_name)
11
+
12
+ # Define function for image preprocessing and prediction
13
+ def process_image(image):
14
+ # Load and preprocess image
15
+ image = Image.open(image)
16
+ inputs = tokenizer(image, return_tensors="pt", padding=True, truncation=True)
17
+ # Make prediction
18
+ outputs = model(**inputs)
19
+ predicted_class = torch.argmax(outputs.logits, dim=1)
20
+ return predicted_class.item()
21
+
22
+ # Create Gradio interface
23
+ inputs = gr.inputs.Image()
24
+ output = gr.outputs.Label(num_top_classes=1)
25
+ interface = gr.Interface(fn=process_image, inputs=inputs, outputs=output, capture_session=True)
26
+
27
+ # Deploy the Gradio interface
28
+ interface.launch(share=True)