Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForImageClassification
|
3 |
+
from PIL import Image
|
4 |
+
import requests
|
5 |
+
import torch
|
6 |
+
|
7 |
+
# Load model from Hugging Face model hub
|
8 |
+
model_name = "your-username/your-model-name" # Replace with your model's name on Hugging Face
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
+
model = AutoModelForImageClassification.from_pretrained(model_name)
|
11 |
+
|
12 |
+
# Define function for image preprocessing and prediction
|
13 |
+
def process_image(image):
|
14 |
+
# Load and preprocess image
|
15 |
+
image = Image.open(image)
|
16 |
+
inputs = tokenizer(image, return_tensors="pt", padding=True, truncation=True)
|
17 |
+
# Make prediction
|
18 |
+
outputs = model(**inputs)
|
19 |
+
predicted_class = torch.argmax(outputs.logits, dim=1)
|
20 |
+
return predicted_class.item()
|
21 |
+
|
22 |
+
# Create Gradio interface
|
23 |
+
inputs = gr.inputs.Image()
|
24 |
+
output = gr.outputs.Label(num_top_classes=1)
|
25 |
+
interface = gr.Interface(fn=process_image, inputs=inputs, outputs=output, capture_session=True)
|
26 |
+
|
27 |
+
# Deploy the Gradio interface
|
28 |
+
interface.launch(share=True)
|