import gradio as gr from transformers import AutoTokenizer, AutoModelForImageClassification from PIL import Image import requests import torch # Load model from Hugging Face model hub model_name = "your-username/your-model-name" # Replace with your model's name on Hugging Face tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForImageClassification.from_pretrained(model_name) # Define function for image preprocessing and prediction def process_image(image): # Load and preprocess image image = Image.open(image) inputs = tokenizer(image, return_tensors="pt", padding=True, truncation=True) # Make prediction outputs = model(**inputs) predicted_class = torch.argmax(outputs.logits, dim=1) return predicted_class.item() # Create Gradio interface inputs = gr.inputs.Image() output = gr.outputs.Label(num_top_classes=1) interface = gr.Interface(fn=process_image, inputs=inputs, outputs=output, capture_session=True) # Deploy the Gradio interface interface.launch(share=True)