NKASG's picture
Update app.py
9880bdc verified
raw
history blame contribute delete
849 Bytes
import tf_keras as keras
import gradio as gr
import cv2
import os
print(os.listdir('./model'))
used_model = keras.models.load_model('./model')
new_classes = ['Potato___Early_blight', 'Potato___Late_blight', 'Potato___healthy']
def classify_image(img_dt):
img_dt = cv2.resize(img_dt,(256,256))
img_dt = img_dt.reshape((-1,256,256,3))
prediction = used_model.predict(img_dt).flatten()
confidences = {new_classes[i]: float(prediction[i]) for i in range (3) }
return confidences
with gr.Blocks() as demo:
signal = gr.Markdown(''' Welcome to Maize Classifier,This model can identify if a leaf is
**HEALTHY**, has **'Potato___Early_blight'** or **Potato_late___blight**''')
with gr.Row():
inp = gr.Image()
out = gr.Label()
inp.upload(fn= classify_image, inputs = inp, outputs = out)
demo.launch()