Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,27 @@
|
|
1 |
-
import
|
2 |
-
import requests
|
3 |
import gradio as gr
|
|
|
|
|
4 |
|
5 |
-
inception_net = tf.keras.applications.MobileNetV2()
|
6 |
-
response = requests.get("https://git.io/JJkYN")
|
7 |
-
labels = response.text.split("\n")
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
14 |
return confidences
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
20 |
|
21 |
demo.launch()
|
|
|
1 |
+
import tf_keras as keras
|
|
|
2 |
import gradio as gr
|
3 |
+
import cv2
|
4 |
+
import os
|
5 |
|
|
|
|
|
|
|
6 |
|
7 |
+
print(os.listdir('./model'))
|
8 |
+
used_model = keras.models.load_model('./model')
|
9 |
+
new_classes = ['Potato___Early_blight', 'Potato___Late_blight', 'Potato___healthy']
|
10 |
+
|
11 |
+
def classify_image(img_dt):
|
12 |
+
img_dt = cv2.resize(img_dt,(256,256))
|
13 |
+
img_dt = img_dt.reshape((-1,256,256,3))
|
14 |
+
prediction = used_model.predict(img_dt).flatten()
|
15 |
+
confidences = {new_classes[i]: float(prediction[i]) for i in range (4) }
|
16 |
return confidences
|
17 |
|
18 |
+
|
19 |
+
with gr.Blocks() as demo:
|
20 |
+
signal = gr.Markdown(''' Welcome to Maize Classifier,This model can identify if a leaf is
|
21 |
+
**HEALTHY**, has **'Potato___Early_blight'** or **Potato_late___blight**''')
|
22 |
+
with gr.Row():
|
23 |
+
inp = gr.Image()
|
24 |
+
out = gr.Label()
|
25 |
+
inp.upload(fn= classify_image, inputs = inp, outputs = out)
|
26 |
|
27 |
demo.launch()
|