Spaces:
Build error
Build error
# import gradio as gr | |
# import tensorflow as tf | |
# from PIL import Image | |
# import numpy as np | |
# # Teachable Machineで作成したモデルのパス | |
# model_path = "keras_model.h5" | |
# # モデルの読み込み | |
# model = tf.keras.models.load_model(model_path) | |
# # クラスのラベル(Teachable Machineで指定したクラス名と同じ順序で設定) | |
# class_labels = [ | |
# "Cotton", | |
# "Linen", | |
# "Silk", | |
# "Wool", | |
# "Polyester", | |
# "Nylon", | |
# "Rayon", | |
# "Fleece", | |
# "Leather", | |
# "Synth Leather" | |
# ] | |
# # GradioのUIの設定 | |
# def classify_image(img): | |
# # 画像の前処理 | |
# img = Image.fromarray((img * 255).astype(np.uint8)) | |
# img = img.resize((224, 224)) | |
# img_array = tf.keras.preprocessing.image.img_to_array(img) | |
# img_array = tf.expand_dims(img_array, 0) # バッチの次元を追加 | |
# # モデルの予測 | |
# predictions = model.predict(img_array) | |
# predicted_class = class_labels[np.argmax(predictions)] | |
# return predicted_class | |
# # Gradio UIの作成 | |
# iface = gr.Interface( | |
# fn=classify_image, | |
# inputs=gr.Image(), | |
# outputs=gr.Textbox(), | |
# # live=True, | |
# ) | |
# # UIの起動 | |
# iface.launch(share=True) | |
from fastai.vision.all import * | |
import gradio as gr | |
learn = load_learner('export.pkl') | |
categories = ('Blouse', 'Dress', 'Pants', 'Shirt', 'Shorts') | |
title = "Clothing Identifier" | |
def classify_image(img): | |
pred, idx, probs = learn.predict(img) | |
highest_prob_index = probs.argmax() # Find the index of the highest probability | |
return categories[highest_prob_index] # Return the class with the highest probability | |
iface = gr.Interface( | |
fn=classify_image, | |
inputs=gr.Image(), | |
outputs=gr.Textbox(), | |
title = title, | |
examples = ['dress.jpg', 'shirt.jpg', 'pants.jpg', 'shorts.jpg'], | |
# live=True, | |
) | |
iface.launch(share=True) | |
# image = gr.Image(shape=(512, 512)) | |
# label = gr.Label() | |
# examples = ['dress.jpg', 'shirt.jpg', 'pants.jpg', 'shorts.jpg'] | |
# intf = gr.Interface(fn=classify_image, title=title, inputs=image, outputs=label, examples=examples) | |
# intf.launch(inline=False) | |