NKASG's picture
Create app.py
887e162 verified
raw
history blame
922 Bytes
import streamlit as st
from keras.models import load_model
from PIL import Image
import numpy as np
from util import classify, set_background
set_background('./bgs/bg5.png')
# set title
st.title('Pneumonia classification')
# set header
st.header('Please upload a chest X-ray image')
# upload file
file = st.file_uploader('', type=['jpeg', 'jpg', 'png'])
# load classifier
model = load_model('./model/pneumonia_classifier.h5')
# load class names
with open('./model/labels.txt', 'r') as f:
class_names = [a[:-1].split(' ')[1] for a in f.readlines()]
f.close()
# display image
if file is not None:
image = Image.open(file).convert('RGB')
st.image(image, use_column_width=True)
# classify image
class_name, conf_score = classify(image, model, class_names)
# write classification
st.write("## {}".format(class_name))
st.write("### score: {}%".format(int(conf_score * 1000) / 10))