import streamlit as st from keras.models import load_model from PIL import Image import numpy as np from util import classify, set_background set_background('./bgs/bg5.png') # set title st.title('Pneumonia classification') # set header st.header('Please upload a chest X-ray image') # upload file file = st.file_uploader('', type=['jpeg', 'jpg', 'png']) # load classifier model = load_model('./model/pneumonia_classifier.h5') # load class names with open('./model/labels.txt', 'r') as f: class_names = [a[:-1].split(' ')[1] for a in f.readlines()] f.close() # display image if file is not None: image = Image.open(file).convert('RGB') st.image(image, use_column_width=True) # classify image class_name, conf_score = classify(image, model, class_names) # write classification st.write("## {}".format(class_name)) st.write("### score: {}%".format(int(conf_score * 1000) / 10))