Spaces:
Sleeping
Sleeping
Update BihariVernacular.py
Browse files- BihariVernacular.py +102 -102
BihariVernacular.py
CHANGED
@@ -1,102 +1,102 @@
|
|
1 |
-
# -*- coding: utf-8 -*-
|
2 |
-
"""
|
3 |
-
Created on Fri Nov 22 14:30:42 2024
|
4 |
-
|
5 |
-
@author:
|
6 |
-
"""
|
7 |
-
|
8 |
-
# -*- coding: utf-8 -*-
|
9 |
-
"""
|
10 |
-
Created on Mon Dec 9 16:43:31 2024
|
11 |
-
|
12 |
-
@author: Pradeep Kumar
|
13 |
-
"""
|
14 |
-
import whisper
|
15 |
-
import torch
|
16 |
-
import os
|
17 |
-
import gradio as gr
|
18 |
-
from deep_translator import GoogleTranslator
|
19 |
-
|
20 |
-
# Check if NVIDIA GPU is available
|
21 |
-
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
22 |
-
|
23 |
-
# Directories for transcripts
|
24 |
-
BASE_DIR = os.getcwd()
|
25 |
-
TRANSCRIPTS_FOLDER = os.path.join(BASE_DIR, 'transcripts')
|
26 |
-
|
27 |
-
# Ensure transcripts directory exists
|
28 |
-
def check_directory(path):
|
29 |
-
if not os.path.exists(path):
|
30 |
-
os.makedirs(path)
|
31 |
-
|
32 |
-
check_directory(TRANSCRIPTS_FOLDER)
|
33 |
-
|
34 |
-
def transcribe_and_translate(audio_file, selected_language, model_type="base"):
|
35 |
-
"""
|
36 |
-
Transcribe audio using Whisper and translate it into English if required.
|
37 |
-
|
38 |
-
:param audio_file: Path to the uploaded audio file
|
39 |
-
:param selected_language: Language code for transcription
|
40 |
-
:param model_type: Whisper model type (default is 'base')
|
41 |
-
:return: Transcription and translation
|
42 |
-
"""
|
43 |
-
temp_audio_path = os.path.join(BASE_DIR, audio_file.name)
|
44 |
-
|
45 |
-
# Save the uploaded file to a temporary location
|
46 |
-
with open(temp_audio_path, "wb") as f:
|
47 |
-
f.write(audio_file.read())
|
48 |
-
|
49 |
-
try:
|
50 |
-
# Load the Whisper model based on user selection
|
51 |
-
model = whisper.load_model(model_type, device=DEVICE)
|
52 |
-
except Exception as e:
|
53 |
-
return f"Failed to load Whisper model ({model_type}): {e}"
|
54 |
-
|
55 |
-
try:
|
56 |
-
# Transcribe with the user-selected language
|
57 |
-
if selected_language:
|
58 |
-
result = model.transcribe(temp_audio_path, language=selected_language, verbose=False)
|
59 |
-
else:
|
60 |
-
return "Language selection is required."
|
61 |
-
|
62 |
-
# Save the transcription with timestamps
|
63 |
-
transcript_file = os.path.join(TRANSCRIPTS_FOLDER, f"{audio_file.name}_transcript.txt")
|
64 |
-
|
65 |
-
translated_text = []
|
66 |
-
with open(transcript_file, 'w', encoding='utf-8') as text_file:
|
67 |
-
for segment in result['segments']:
|
68 |
-
start_time = segment['start']
|
69 |
-
end_time = segment['end']
|
70 |
-
text = segment['text']
|
71 |
-
text_file.write(f"[{start_time:.2f} - {end_time:.2f}] {text}\n")
|
72 |
-
if selected_language in ['mai', 'mag', 'bho']:
|
73 |
-
text_en = GoogleTranslator(source='auto', target='en').translate(text)
|
74 |
-
translated_text.append(f"[{start_time:.2f} - {end_time:.2f}] {text_en}")
|
75 |
-
text_file.write(f"[{start_time:.2f} - {end_time:.2f}] {text_en}\n")
|
76 |
-
|
77 |
-
# Return the transcription and translation
|
78 |
-
return "\n".join(translated_text) if translated_text else result['text']
|
79 |
-
|
80 |
-
except Exception as e:
|
81 |
-
return f"Failed to process the audio file: {e}"
|
82 |
-
|
83 |
-
finally:
|
84 |
-
# Clean up temporary audio file
|
85 |
-
if os.path.exists(temp_audio_path):
|
86 |
-
os.remove(temp_audio_path)
|
87 |
-
|
88 |
-
# Define the Gradio interface
|
89 |
-
interface = gr.Interface(
|
90 |
-
fn=transcribe_and_translate,
|
91 |
-
inputs=[
|
92 |
-
gr.Audio(source="upload", type="file", label="Upload Audio"),
|
93 |
-
gr.Dropdown(label="Select Language", choices=["mai", "mag", "bho", "en"], value="mai"),
|
94 |
-
gr.Dropdown(label="Select Model Type", choices=["tiny", "base", "small", "medium", "large"], value="base")
|
95 |
-
],
|
96 |
-
outputs="text",
|
97 |
-
title="Maithili, Maghi, and Bhojpuri Transcription and Translation"
|
98 |
-
)
|
99 |
-
|
100 |
-
if __name__ == '__main__':
|
101 |
-
# Launch the Gradio interface
|
102 |
-
interface.launch()
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""
|
3 |
+
Created on Fri Nov 22 14:30:42 2024
|
4 |
+
|
5 |
+
@author: Pradeep Kumar
|
6 |
+
"""
|
7 |
+
|
8 |
+
# -*- coding: utf-8 -*-
|
9 |
+
"""
|
10 |
+
Created on Mon Dec 9 16:43:31 2024
|
11 |
+
|
12 |
+
@author: Pradeep Kumar
|
13 |
+
"""
|
14 |
+
import whisper
|
15 |
+
import torch
|
16 |
+
import os
|
17 |
+
import gradio as gr
|
18 |
+
from deep_translator import GoogleTranslator
|
19 |
+
|
20 |
+
# Check if NVIDIA GPU is available
|
21 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
22 |
+
|
23 |
+
# Directories for transcripts
|
24 |
+
BASE_DIR = os.getcwd()
|
25 |
+
TRANSCRIPTS_FOLDER = os.path.join(BASE_DIR, 'transcripts')
|
26 |
+
|
27 |
+
# Ensure transcripts directory exists
|
28 |
+
def check_directory(path):
|
29 |
+
if not os.path.exists(path):
|
30 |
+
os.makedirs(path)
|
31 |
+
|
32 |
+
check_directory(TRANSCRIPTS_FOLDER)
|
33 |
+
|
34 |
+
def transcribe_and_translate(audio_file, selected_language, model_type="base"):
|
35 |
+
"""
|
36 |
+
Transcribe audio using Whisper and translate it into English if required.
|
37 |
+
|
38 |
+
:param audio_file: Path to the uploaded audio file
|
39 |
+
:param selected_language: Language code for transcription
|
40 |
+
:param model_type: Whisper model type (default is 'base')
|
41 |
+
:return: Transcription and translation
|
42 |
+
"""
|
43 |
+
temp_audio_path = os.path.join(BASE_DIR, audio_file.name)
|
44 |
+
|
45 |
+
# Save the uploaded file to a temporary location
|
46 |
+
with open(temp_audio_path, "wb") as f:
|
47 |
+
f.write(audio_file.read())
|
48 |
+
|
49 |
+
try:
|
50 |
+
# Load the Whisper model based on user selection
|
51 |
+
model = whisper.load_model(model_type, device=DEVICE)
|
52 |
+
except Exception as e:
|
53 |
+
return f"Failed to load Whisper model ({model_type}): {e}"
|
54 |
+
|
55 |
+
try:
|
56 |
+
# Transcribe with the user-selected language
|
57 |
+
if selected_language:
|
58 |
+
result = model.transcribe(temp_audio_path, language=selected_language, verbose=False)
|
59 |
+
else:
|
60 |
+
return "Language selection is required."
|
61 |
+
|
62 |
+
# Save the transcription with timestamps
|
63 |
+
transcript_file = os.path.join(TRANSCRIPTS_FOLDER, f"{audio_file.name}_transcript.txt")
|
64 |
+
|
65 |
+
translated_text = []
|
66 |
+
with open(transcript_file, 'w', encoding='utf-8') as text_file:
|
67 |
+
for segment in result['segments']:
|
68 |
+
start_time = segment['start']
|
69 |
+
end_time = segment['end']
|
70 |
+
text = segment['text']
|
71 |
+
text_file.write(f"[{start_time:.2f} - {end_time:.2f}] {text}\n")
|
72 |
+
if selected_language in ['mai', 'mag', 'bho']:
|
73 |
+
text_en = GoogleTranslator(source='auto', target='en').translate(text)
|
74 |
+
translated_text.append(f"[{start_time:.2f} - {end_time:.2f}] {text_en}")
|
75 |
+
text_file.write(f"[{start_time:.2f} - {end_time:.2f}] {text_en}\n")
|
76 |
+
|
77 |
+
# Return the transcription and translation
|
78 |
+
return "\n".join(translated_text) if translated_text else result['text']
|
79 |
+
|
80 |
+
except Exception as e:
|
81 |
+
return f"Failed to process the audio file: {e}"
|
82 |
+
|
83 |
+
finally:
|
84 |
+
# Clean up temporary audio file
|
85 |
+
if os.path.exists(temp_audio_path):
|
86 |
+
os.remove(temp_audio_path)
|
87 |
+
|
88 |
+
# Define the Gradio interface
|
89 |
+
interface = gr.Interface(
|
90 |
+
fn=transcribe_and_translate,
|
91 |
+
inputs=[
|
92 |
+
gr.Audio(source="upload", type="file", label="Upload Audio"),
|
93 |
+
gr.Dropdown(label="Select Language", choices=["mai", "mag", "bho", "en"], value="mai"),
|
94 |
+
gr.Dropdown(label="Select Model Type", choices=["tiny", "base", "small", "medium", "large"], value="base")
|
95 |
+
],
|
96 |
+
outputs="text",
|
97 |
+
title="Maithili, Maghi, and Bhojpuri Transcription and Translation"
|
98 |
+
)
|
99 |
+
|
100 |
+
if __name__ == '__main__':
|
101 |
+
# Launch the Gradio interface
|
102 |
+
interface.launch()
|