Spaces:
Sleeping
Sleeping
File size: 11,295 Bytes
f18e71f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
# Copyright 2024 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for official.nlp.data.create_xlnet_pretraining_data."""
import os
import tempfile
from typing import List
from absl import logging
from absl.testing import parameterized
import numpy as np
import tensorflow as tf, tf_keras
from official.nlp.data import create_xlnet_pretraining_data as cpd
_VOCAB_WORDS = ["vocab_1", "vocab_2"]
# pylint: disable=invalid-name
def _create_files(
temp_dir: str, file_contents: List[List[str]]) -> List[str]:
"""Writes arbitrary documents into files."""
root_dir = tempfile.mkdtemp(dir=temp_dir)
files = []
for i, file_content in enumerate(file_contents):
destination = os.path.join(root_dir, "%d.txt" % i)
with open(destination, "wb") as f:
for line in file_content:
f.write(line.encode("utf-8"))
files.append(destination)
return files
def _get_mock_tokenizer():
"""Creates a mock tokenizer."""
class MockSpieceModel:
"""Mock Spiece model for testing."""
def __init__(self):
self._special_piece_to_id = {
"<unk>": 0,
}
for piece in set(list('!"#$%&\"()*+,-./:;?@[\\]^_`{|}~')):
self._special_piece_to_id[piece] = 1
def EncodeAsPieces(self, inputs: str) -> List[str]:
return inputs
def SampleEncodeAsPieces(self,
inputs: str,
nbest_size: int,
theta: float) -> List[str]:
del nbest_size, theta
return inputs
def PieceToId(self, piece: str) -> int:
return ord(piece[0])
def IdToPiece(self, id_: int) -> str:
return chr(id_) * 3
class Tokenizer:
"""Mock Tokenizer for testing."""
def __init__(self):
self.sp_model = MockSpieceModel()
def convert_ids_to_tokens(self, ids: List[int]) -> List[str]:
return [self.sp_model.IdToPiece(id_) for id_ in ids]
return Tokenizer()
class PreprocessDataTest(tf.test.TestCase):
def test_remove_extraneous_space(self):
line = " abc "
output = cpd._preprocess_line(line)
self.assertEqual(output, "abc")
def test_symbol_replacements(self):
self.assertEqual(cpd._preprocess_line("``abc``"), "\"abc\"")
self.assertEqual(cpd._preprocess_line("''abc''"), "\"abc\"")
def test_accent_replacements(self):
self.assertEqual(cpd._preprocess_line("åbc"), "abc")
def test_lower_case(self):
self.assertEqual(cpd._preprocess_line("ABC", do_lower_case=True), "abc")
def test_end_to_end(self):
self.assertEqual(
cpd._preprocess_line("HelLo ``wórLd``", do_lower_case=True),
"hello \"world\"")
class PreprocessAndTokenizeFilesTest(tf.test.TestCase):
def test_basic_end_to_end(self):
documents = [
[
"This is sentence 1.\n",
"This is sentence 2.\n",
"Sentence 3 is what this is.\n",
],
[
"This is the second document.\n",
"This is the second line of the second document.\n"
],
]
input_files = _create_files(temp_dir=self.get_temp_dir(),
file_contents=documents)
all_data = cpd.preprocess_and_tokenize_input_files(
input_files=input_files,
tokenizer=_get_mock_tokenizer(),
log_example_freq=1)
self.assertEqual(len(all_data), len(documents))
for token_ids, sentence_ids in all_data:
self.assertEqual(len(token_ids), len(sentence_ids))
def test_basic_correctness(self):
documents = [["a\n", "b\n", "c\n"]]
input_files = _create_files(temp_dir=self.get_temp_dir(),
file_contents=documents)
all_data = cpd.preprocess_and_tokenize_input_files(
input_files=input_files,
tokenizer=_get_mock_tokenizer(),
log_example_freq=1)
token_ids, sentence_ids = all_data[0]
self.assertAllClose(token_ids, [97, 98, 99])
self.assertAllClose(sentence_ids, [True, False, True])
def test_correctness_with_spaces_and_accents(self):
documents = [[
" å \n",
"b \n",
" c \n",
]]
input_files = _create_files(temp_dir=self.get_temp_dir(),
file_contents=documents)
all_data = cpd.preprocess_and_tokenize_input_files(
input_files=input_files,
tokenizer=_get_mock_tokenizer(),
log_example_freq=1)
token_ids, sentence_ids = all_data[0]
self.assertAllClose(token_ids, [97, 98, 99])
self.assertAllClose(sentence_ids, [True, False, True])
class BatchReshapeTests(tf.test.TestCase):
def test_basic_functionality(self):
per_host_batch_size = 3
mock_shape = (20,)
# Should truncate and reshape.
expected_result_shape = (3, 6)
tokens = np.zeros(mock_shape)
sentence_ids = np.zeros(mock_shape)
reshaped_data = cpd._reshape_to_batch_dimensions(
tokens=tokens,
sentence_ids=sentence_ids,
per_host_batch_size=per_host_batch_size)
for values in reshaped_data:
self.assertEqual(len(values.flatten()) % per_host_batch_size, 0)
self.assertAllClose(values.shape, expected_result_shape)
class CreateSegmentsTest(tf.test.TestCase):
def test_basic_functionality(self):
data_length = 10
tokens = np.arange(data_length)
sentence_ids = np.concatenate([np.zeros(data_length // 2),
np.ones(data_length // 2)])
begin_index = 0
total_length = 8
a_data, b_data, label = cpd._create_a_and_b_segments(
tokens=tokens,
sentence_ids=sentence_ids,
begin_index=begin_index,
total_length=total_length,
no_cut_probability=0.)
self.assertAllClose(a_data, [0, 1, 2, 3])
self.assertAllClose(b_data, [5, 6, 7, 8])
self.assertEqual(label, 1)
def test_no_cut(self):
data_length = 10
tokens = np.arange(data_length)
sentence_ids = np.zeros(data_length)
begin_index = 0
total_length = 8
a_data, b_data, label = cpd._create_a_and_b_segments(
tokens=tokens,
sentence_ids=sentence_ids,
begin_index=begin_index,
total_length=total_length,
no_cut_probability=0.)
self.assertGreater(len(a_data), 0)
self.assertGreater(len(b_data), 0)
self.assertEqual(label, 0)
def test_no_cut_with_probability(self):
data_length = 10
tokens = np.arange(data_length)
sentence_ids = np.concatenate([np.zeros(data_length // 2),
np.ones(data_length // 2)])
begin_index = 0
total_length = 8
a_data, b_data, label = cpd._create_a_and_b_segments(
tokens=tokens,
sentence_ids=sentence_ids,
begin_index=begin_index,
total_length=total_length,
no_cut_probability=1.)
self.assertGreater(len(a_data), 0)
self.assertGreater(len(b_data), 0)
self.assertEqual(label, 0)
class CreateInstancesTest(tf.test.TestCase):
"""Tests conversions of Token/Sentence IDs to training instances."""
def test_basic(self):
data_length = 12
tokens = np.arange(data_length)
sentence_ids = np.zeros(data_length)
seq_length = 8
instances = cpd._convert_tokens_to_instances(
tokens=tokens,
sentence_ids=sentence_ids,
per_host_batch_size=2,
seq_length=seq_length,
reuse_length=4,
tokenizer=_get_mock_tokenizer(),
bi_data=False,
num_cores_per_host=1,
logging_frequency=1)
for instance in instances:
self.assertEqual(len(instance.data), seq_length)
self.assertEqual(len(instance.segment_ids), seq_length)
self.assertIsInstance(instance.label, int)
self.assertIsInstance(instance.boundary_indices, list)
class TFRecordPathTests(tf.test.TestCase):
def test_basic(self):
base_kwargs = dict(
per_host_batch_size=1,
num_cores_per_host=1,
seq_length=2,
reuse_length=1)
config1 = dict(
prefix="test",
suffix="",
bi_data=True,
use_eod_token=False,
do_lower_case=True)
config1.update(base_kwargs)
expectation1 = "test_seqlen-2_reuse-1_bs-1_cores-1_uncased_bi.tfrecord"
self.assertEqual(cpd.get_tfrecord_name(**config1), expectation1)
config2 = dict(
prefix="",
suffix="test",
bi_data=False,
use_eod_token=False,
do_lower_case=False)
config2.update(base_kwargs)
expectation2 = "seqlen-2_reuse-1_bs-1_cores-1_cased_uni_test.tfrecord"
self.assertEqual(cpd.get_tfrecord_name(**config2), expectation2)
config3 = dict(
prefix="",
suffix="",
use_eod_token=True,
bi_data=False,
do_lower_case=True)
config3.update(base_kwargs)
expectation3 = "seqlen-2_reuse-1_bs-1_cores-1_uncased_eod_uni.tfrecord"
self.assertEqual(cpd.get_tfrecord_name(**config3), expectation3)
class TestCreateTFRecords(parameterized.TestCase, tf.test.TestCase):
@parameterized.named_parameters(
("bi_data_only", True, False, False),
("eod_token_only", False, True, True),
("lower_case_only", False, False, True),
("all_enabled", True, True, True),
)
def test_end_to_end(self,
bi_data: bool,
use_eod_token: bool,
do_lower_case: bool):
tokenizer = _get_mock_tokenizer()
num_documents = 5
sentences_per_document = 10
document_length = 50
documents = [
["a " * document_length for _ in range(sentences_per_document)]
for _ in range(num_documents)]
save_dir = tempfile.mkdtemp(dir=self.get_temp_dir())
files = _create_files(temp_dir=self.get_temp_dir(), file_contents=documents)
cpd.create_tfrecords(
tokenizer=tokenizer,
input_file_or_files=",".join(files),
use_eod_token=use_eod_token,
do_lower_case=do_lower_case,
per_host_batch_size=8,
seq_length=8,
reuse_length=4,
bi_data=bi_data,
num_cores_per_host=2,
save_dir=save_dir)
self.assertTrue(any(filter(lambda x: x.endswith(".json"),
os.listdir(save_dir))))
self.assertTrue(any(filter(lambda x: x.endswith(".tfrecord"),
os.listdir(save_dir))))
if __name__ == "__main__":
np.random.seed(0)
logging.set_verbosity(logging.INFO)
tf.test.main()
|